Update app.py
Browse files
app.py
CHANGED
@@ -86,6 +86,7 @@ def inference(
|
|
86 |
target_sizes = torch.tensor(img.size[::-1]).unsqueeze(0)
|
87 |
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
|
88 |
bboxes_scaled = postprocessed_outputs[0]['boxes']
|
|
|
89 |
|
90 |
classes_list = get_class_list_from_input(classes_to_show)
|
91 |
res_img = plot_results(img, probas[keep], bboxes_scaled[keep], model, classes_list)
|
@@ -93,6 +94,7 @@ def inference(
|
|
93 |
return res_img
|
94 |
|
95 |
|
|
|
96 |
|
97 |
inputs = [
|
98 |
gr.inputs.Image(type="filepath", label="Input Image"),
|
@@ -112,9 +114,10 @@ inputs = [
|
|
112 |
),
|
113 |
gr.inputs.Slider(minimum=0, maximum=1.0, step=0.01, default=0.9, label="Probability Threshold"),
|
114 |
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
115 |
-
|
116 |
]
|
117 |
|
|
|
118 |
outputs = gr.outputs.Image(type="filepath", label="Output Image")
|
119 |
|
120 |
examples = [
|
|
|
86 |
target_sizes = torch.tensor(img.size[::-1]).unsqueeze(0)
|
87 |
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
|
88 |
bboxes_scaled = postprocessed_outputs[0]['boxes']
|
89 |
+
|
90 |
|
91 |
classes_list = get_class_list_from_input(classes_to_show)
|
92 |
res_img = plot_results(img, probas[keep], bboxes_scaled[keep], model, classes_list)
|
|
|
94 |
return res_img
|
95 |
|
96 |
|
97 |
+
classes_to_show = gr.components.Textbox(placeholder="e.g. person, boat", label="Classes to use (empty means all classes)")
|
98 |
|
99 |
inputs = [
|
100 |
gr.inputs.Image(type="filepath", label="Input Image"),
|
|
|
114 |
),
|
115 |
gr.inputs.Slider(minimum=0, maximum=1.0, step=0.01, default=0.9, label="Probability Threshold"),
|
116 |
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
117 |
+
classes_to_show,
|
118 |
]
|
119 |
|
120 |
+
|
121 |
outputs = gr.outputs.Image(type="filepath", label="Output Image")
|
122 |
|
123 |
examples = [
|