#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# Copyright 2020 Johns Hopkins University (Shinji Watanabe)
#                Northwestern Polytechnical University (Pengcheng Guo)
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""ConvolutionModule definition."""

from torch import nn


class ConvolutionModule(nn.Module):
    """ConvolutionModule in Conformer model.

    :param int channels: channels of cnn
    :param int kernel_size: kernerl size of cnn

    """

    def __init__(self, channels, kernel_size, activation=nn.ReLU(), bias=True):
        """Construct an ConvolutionModule object."""
        super(ConvolutionModule, self).__init__()
        # kernerl_size should be a odd number for 'SAME' padding
        assert (kernel_size - 1) % 2 == 0

        self.pointwise_conv1 = nn.Conv1d(
            channels,
            2 * channels,
            kernel_size=1,
            stride=1,
            padding=0,
            bias=bias,
        )
        self.depthwise_conv = nn.Conv1d(
            channels,
            channels,
            kernel_size,
            stride=1,
            padding=(kernel_size - 1) // 2,
            groups=channels,
            bias=bias,
        )
        self.norm = nn.BatchNorm1d(channels)
        self.pointwise_conv2 = nn.Conv1d(
            channels,
            channels,
            kernel_size=1,
            stride=1,
            padding=0,
            bias=bias,
        )
        self.activation = activation

    def forward(self, x):
        """Compute convolution module.

        :param torch.Tensor x: (batch, time, size)
        :return torch.Tensor: convoluted `value` (batch, time, d_model)
        """
        # exchange the temporal dimension and the feature dimension
        x = x.transpose(1, 2)

        # GLU mechanism
        x = self.pointwise_conv1(x)  # (batch, 2*channel, dim)
        x = nn.functional.glu(x, dim=1)  # (batch, channel, dim)

        # 1D Depthwise Conv
        x = self.depthwise_conv(x)
        x = self.activation(self.norm(x))

        x = self.pointwise_conv2(x)

        return x.transpose(1, 2)