File size: 7,216 Bytes
d59aeff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# Copyright 2019 Shigeki Karita
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""Subsampling layer definition."""
import logging
import torch

from espnet.nets.pytorch_backend.transformer.embedding import PositionalEncoding


class Conv2dSubsampling(torch.nn.Module):
    """Convolutional 2D subsampling (to 1/4 length or 1/2 length).

    :param int idim: input dim
    :param int odim: output dim
    :param flaot dropout_rate: dropout rate
    :param torch.nn.Module pos_enc: custom position encoding layer

    """

    def __init__(self, idim, odim, dropout_rate, pos_enc=None, 
                 subsample_by_2=False,
        ):
        """Construct an Conv2dSubsampling object."""
        super(Conv2dSubsampling, self).__init__()
        self.subsample_by_2 = subsample_by_2
        if subsample_by_2:
            self.conv = torch.nn.Sequential(
                torch.nn.Conv2d(1, odim, kernel_size=5, stride=1, padding=2),
                torch.nn.ReLU(),
                torch.nn.Conv2d(odim, odim, kernel_size=4, stride=2, padding=1),
                torch.nn.ReLU(),
            )
            self.out = torch.nn.Sequential(
                torch.nn.Linear(odim * (idim // 2), odim),
                pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate),
            )
        else:
            self.conv = torch.nn.Sequential(
                torch.nn.Conv2d(1, odim, kernel_size=4, stride=2, padding=1),
                torch.nn.ReLU(),
                torch.nn.Conv2d(odim, odim, kernel_size=4, stride=2, padding=1),
                torch.nn.ReLU(),
            )
            self.out = torch.nn.Sequential(
                torch.nn.Linear(odim * (idim // 4), odim),
                pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate),
            )

    def forward(self, x, x_mask):
        """Subsample x.

        :param torch.Tensor x: input tensor
        :param torch.Tensor x_mask: input mask
        :return: subsampled x and mask
        :rtype Tuple[torch.Tensor, torch.Tensor]

        """
        x = x.unsqueeze(1)  # (b, c, t, f)
        x = self.conv(x)
        b, c, t, f = x.size()
        x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
        if x_mask is None:
            return x, None
        if self.subsample_by_2:
            return x, x_mask[:, :, ::2]
        else:
            return x, x_mask[:, :, ::2][:, :, ::2]

    def __getitem__(self, key):
        """Subsample x.

        When reset_parameters() is called, if use_scaled_pos_enc is used,
            return the positioning encoding.

        """
        if key != -1:
            raise NotImplementedError("Support only `-1` (for `reset_parameters`).")
        return self.out[key]


class Conv2dNoSubsampling(torch.nn.Module):
    """Convolutional 2D without subsampling.

    :param int idim: input dim
    :param int odim: output dim
    :param flaot dropout_rate: dropout rate
    :param torch.nn.Module pos_enc: custom position encoding layer

    """

    def __init__(self, idim, odim, dropout_rate, pos_enc=None):
        """Construct an Conv2dSubsampling object."""
        super().__init__()
        logging.info("Encoder does not do down-sample on mel-spectrogram.")
        self.conv = torch.nn.Sequential(
            torch.nn.Conv2d(1, odim, kernel_size=5, stride=1, padding=2),
            torch.nn.ReLU(),
            torch.nn.Conv2d(odim, odim, kernel_size=5, stride=1, padding=2),
            torch.nn.ReLU(),
        )
        self.out = torch.nn.Sequential(
            torch.nn.Linear(odim * idim, odim),
            pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate),
        )

    def forward(self, x, x_mask):
        """Subsample x.

        :param torch.Tensor x: input tensor
        :param torch.Tensor x_mask: input mask
        :return: subsampled x and mask
        :rtype Tuple[torch.Tensor, torch.Tensor]

        """
        x = x.unsqueeze(1)  # (b, c, t, f)
        x = self.conv(x)
        b, c, t, f = x.size()
        x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
        if x_mask is None:
            return x, None
        return x, x_mask

    def __getitem__(self, key):
        """Subsample x.

        When reset_parameters() is called, if use_scaled_pos_enc is used,
            return the positioning encoding.

        """
        if key != -1:
            raise NotImplementedError("Support only `-1` (for `reset_parameters`).")
        return self.out[key]


class Conv2dSubsampling6(torch.nn.Module):
    """Convolutional 2D subsampling (to 1/6 length).

    :param int idim: input dim
    :param int odim: output dim
    :param flaot dropout_rate: dropout rate

    """

    def __init__(self, idim, odim, dropout_rate):
        """Construct an Conv2dSubsampling object."""
        super(Conv2dSubsampling6, self).__init__()
        self.conv = torch.nn.Sequential(
            torch.nn.Conv2d(1, odim, 3, 2),
            torch.nn.ReLU(),
            torch.nn.Conv2d(odim, odim, 5, 3),
            torch.nn.ReLU(),
        )
        self.out = torch.nn.Sequential(
            torch.nn.Linear(odim * (((idim - 1) // 2 - 2) // 3), odim),
            PositionalEncoding(odim, dropout_rate),
        )

    def forward(self, x, x_mask):
        """Subsample x.

        :param torch.Tensor x: input tensor
        :param torch.Tensor x_mask: input mask
        :return: subsampled x and mask
        :rtype Tuple[torch.Tensor, torch.Tensor]
        """
        x = x.unsqueeze(1)  # (b, c, t, f)
        x = self.conv(x)
        b, c, t, f = x.size()
        x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
        if x_mask is None:
            return x, None
        return x, x_mask[:, :, :-2:2][:, :, :-4:3]


class Conv2dSubsampling8(torch.nn.Module):
    """Convolutional 2D subsampling (to 1/8 length).

    :param int idim: input dim
    :param int odim: output dim
    :param flaot dropout_rate: dropout rate

    """

    def __init__(self, idim, odim, dropout_rate):
        """Construct an Conv2dSubsampling object."""
        super(Conv2dSubsampling8, self).__init__()
        self.conv = torch.nn.Sequential(
            torch.nn.Conv2d(1, odim, 3, 2),
            torch.nn.ReLU(),
            torch.nn.Conv2d(odim, odim, 3, 2),
            torch.nn.ReLU(),
            torch.nn.Conv2d(odim, odim, 3, 2),
            torch.nn.ReLU(),
        )
        self.out = torch.nn.Sequential(
            torch.nn.Linear(odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2), odim),
            PositionalEncoding(odim, dropout_rate),
        )

    def forward(self, x, x_mask):
        """Subsample x.

        :param torch.Tensor x: input tensor
        :param torch.Tensor x_mask: input mask
        :return: subsampled x and mask
        :rtype Tuple[torch.Tensor, torch.Tensor]
        """
        x = x.unsqueeze(1)  # (b, c, t, f)
        x = self.conv(x)
        b, c, t, f = x.size()
        x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
        if x_mask is None:
            return x, None
        return x, x_mask[:, :, :-2:2][:, :, :-2:2][:, :, :-2:2]