File size: 55,190 Bytes
c8be32d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
"""
This module contains functions to generate song covers using RVC-based voice models.
"""

from typing import Any
from typings.extra import F0Method, InputAudioExt, InputType, OutputAudioExt

import gc
import glob
import os
import shlex
import shutil
import subprocess
from contextlib import suppress
from logging import WARNING
from pathlib import Path, PurePath
from urllib.parse import parse_qs, urlparse

import yt_dlp

import gradio as gr

import soundfile as sf
import sox
from audio_separator.separator import Separator
from pedalboard import Compressor, HighpassFilter, Reverb
from pedalboard._pedalboard import Pedalboard
from pedalboard.io import AudioFile
from pydub import AudioSegment
from pydub import utils as pydub_utils

from vc.rvc import Config, get_vc, load_hubert, rvc_infer

from backend.common import (
    INTERMEDIATE_AUDIO_DIR,
    OUTPUT_AUDIO_DIR,
    display_progress,
    get_file_hash,
    get_hash,
    get_path_stem,
    get_rvc_model,
    json_dump,
    json_load,
)
from backend.exceptions import InputMissingError, InvalidPathError, PathNotFoundError

from common import RVC_MODELS_DIR, SEPARATOR_MODELS_DIR

SEPARATOR = Separator(
    log_level=WARNING,
    model_file_dir=SEPARATOR_MODELS_DIR,
    output_dir=INTERMEDIATE_AUDIO_DIR,
    mdx_params={
        "hop_length": 1024,
        "segment_size": 256,
        "overlap": 0.001,
        "batch_size": 1,
        "enable_denoise": False,
    },
    mdxc_params={"segment_size": 256, "batch_size": 1, "overlap": 2},
)


def _get_youtube_video_id(url: str, ignore_playlist: bool = True) -> str | None:
    """
    Get video id from a YouTube URL.

    Parameters
    ----------
    url : str
        The YouTube URL.
    ignore_playlist : bool, default=True
        Whether to get id of first video in playlist or the playlist id itself.

    Returns
    -------
    str
        The video id.
    """
    query = urlparse(url)
    if query.hostname == "youtu.be":
        if query.path[1:] == "watch":
            return query.query[2:]
        return query.path[1:]

    if query.hostname in {"www.youtube.com", "youtube.com", "music.youtube.com"}:
        if not ignore_playlist:
            # use case: get playlist id not current video in playlist
            with suppress(KeyError):
                return parse_qs(query.query)["list"][0]
        if query.path == "/watch":
            return parse_qs(query.query)["v"][0]
        if query.path[:7] == "/watch/":
            return query.path.split("/")[1]
        if query.path[:7] == "/embed/":
            return query.path.split("/")[2]
        if query.path[:3] == "/v/":
            return query.path.split("/")[2]
    return None


def _yt_download(link: str, song_dir: str) -> str:
    """
    Download audio from a YouTube link.

    Parameters
    ----------
    link : str
        The YouTube link.
    song_dir : str
        The directory to save the downloaded audio to.

    Returns
    -------
    str
        The path to the downloaded audio file.
    """
    outtmpl = os.path.join(song_dir, "0_%(title)s_Original")
    ydl_opts = {
        "quiet": True,
        "no_warnings": True,
        "format": "bestaudio",
        "outtmpl": outtmpl,
        "ignoreerrors": True,
        "nocheckcertificate": True,
        "postprocessors": [
            {
                "key": "FFmpegExtractAudio",
                "preferredcodec": "wav",
                "preferredquality": 0,
            }
        ],
    }
    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
        result = ydl.extract_info(link, download=True)
        if not result:
            raise PathNotFoundError("No audio found in the provided YouTube link!")
        download_path = ydl.prepare_filename(result, outtmpl=f"{outtmpl}.wav")

    return download_path


def _get_input_audio_paths() -> list[str]:
    """
    Get the paths of all cached input audio files.

    Returns
    -------
    list[str]
        The paths of all cached input audio files
    """
    # TODO if we later add .json file for input then we need to exclude those here
    return glob.glob(os.path.join(INTERMEDIATE_AUDIO_DIR, "*", "0_*_Original*"))


def _get_input_audio_path(song_dir: str) -> str | None:
    """
    Get the path of the cached input audio file in a given song directory.

    Parameters
    ----------
    song_dir : str
        The path to a song directory.

    Returns
    -------
    str
        The path of the cached input audio file, if it exists.
    """
    # NOTE orig_song_paths should never contain more than one element
    return next(iter(glob.glob(os.path.join(song_dir, "0_*_Original*"))), None)


def _pitch_shift(audio_path: str, output_path: str, n_semi_tones: int) -> None:
    """
    Pitch-shift an audio file.

    Parameters
    ----------
    audio_path : str
        The path of the audio file to pitch-shift.
    output_path : str
        The path to save the pitch-shifted audio file to.
    n_semi_tones : int
        The number of semi-tones to pitch-shift the audio by.
    """
    y, sr = sf.read(audio_path)
    tfm = sox.Transformer()
    tfm.pitch(n_semi_tones)
    y_shifted = tfm.build_array(input_array=y, sample_rate_in=sr)
    sf.write(output_path, y_shifted, sr)


# TODO consider increasing hash_size to 16
# otherwise we might have problems with hash collisions
# when using app as CLI
def _get_unique_base_path(
    song_dir: str,
    prefix: str,
    arg_dict: dict[str, Any],
    progress_bar: gr.Progress | None = None,
    percentage: float = 0.0,
    hash_size: int = 5,
) -> str:
    """
    Get a unique base path for an audio file in a song directory
    by hashing the arguments used to generate the audio.

    Parameters
    ----------
    song_dir : str
        The path to a song directory.
    prefix : str
        The prefix to use for the base path.
    arg_dict : dict
        The dictionary of arguments used to generate the audio in the given file.
    progress_bar : gr.Progress, optional
        Gradio progress bar to update.
    percentage : float, default=0.0
        Percentage to display in the progress bar.
    hash_size : int, default=5
        The size (in bytes) of the hash to use for the base path.

    Returns
    -------
    str
        The unique base path for the audio file.
    """
    dict_hash = get_hash(arg_dict, size=hash_size)
    while True:
        base_path = os.path.join(song_dir, f"{prefix}_{dict_hash}")
        json_path = f"{base_path}.json"
        if os.path.exists(json_path):
            file_dict = json_load(json_path)
            if file_dict == arg_dict:
                return base_path
            display_progress("[~] Rehashing...", percentage, progress_bar)
            dict_hash = get_hash(dict_hash, size=hash_size)
        else:
            return base_path


def _convert_voice(
    voice_model: str,
    voice_path: str,
    output_path: str,
    pitch_change: int,
    f0_method: F0Method,
    index_rate: float,
    filter_radius: int,
    rms_mix_rate: float,
    protect: float,
    crepe_hop_length: int,
    output_sr: int,
) -> None:
    """
    Convert a voice track using a voice model.

    Parameters
    ----------
    voice_model : str
        The name of the voice model to use.
    voice_path : str
        The path to the voice track to convert.
    output_path : str
        The path to save the converted voice to.
    pitch_change : int
        The number of semi-tones to pitch-shift the converted voice by.
    f0_method : F0Method
        The method to use for pitch extraction.
    index_rate : float
        The influence of index file on voice conversion.
    filter_radius : int
        The filter radius to use for the voice conversion.
    rms_mix_rate : float
        The blending rate of the volume envelope of converted voice.
    protect : float
        The protection rate for consonants and breathing sounds.
    crepe_hop_length : int
        The hop length to use for Crepe pitch extraction method.
    output_sr : int
        The sample rate to use for the output audio.
    """
    rvc_model_path, rvc_index_path = get_rvc_model(voice_model)
    device = "cuda:0"
    config = Config(device, True)
    hubert_model = load_hubert(
        device, config.is_half, os.path.join(RVC_MODELS_DIR, "hubert_base.pt")
    )
    cpt, version, net_g, tgt_sr, vc = get_vc(
        device, config.is_half, config, rvc_model_path
    )

    # convert main vocals
    rvc_infer(
        rvc_index_path,
        index_rate,
        voice_path,
        output_path,
        pitch_change,
        f0_method,
        cpt,
        version,
        net_g,
        filter_radius,
        tgt_sr,
        rms_mix_rate,
        protect,
        crepe_hop_length,
        vc,
        hubert_model,
        output_sr,
    )
    del hubert_model, cpt
    gc.collect()


def _add_audio_effects(
    audio_path: str,
    output_path: str,
    reverb_rm_size: float,
    reverb_wet: float,
    reverb_dry: float,
    reverb_damping: float,
) -> None:
    """
    Add high-pass filter, compressor and reverb effects to an audio file.

    Parameters
    ----------
    audio_path : str
        The path of the audio file to add effects to.
    output_path : str
        The path to save the effected audio file to.
    reverb_rm_size : float
        The room size of the reverb effect.
    reverb_wet : float
        The wet level of the reverb effect.
    reverb_dry : float
        The dry level of the reverb effect.
    reverb_damping : float
        The damping of the reverb effect.
    """
    board = Pedalboard(
        [
            HighpassFilter(),
            Compressor(ratio=4, threshold_db=-15),
            Reverb(
                room_size=reverb_rm_size,
                dry_level=reverb_dry,
                wet_level=reverb_wet,
                damping=reverb_damping,
            ),
        ]
    )

    with AudioFile(audio_path) as f:
        with AudioFile(output_path, "w", f.samplerate, f.num_channels) as o:
            # Read one second of audio at a time, until the file is empty:
            while f.tell() < f.frames:
                chunk = f.read(int(f.samplerate))
                effected = board(chunk, f.samplerate, reset=False)
                o.write(effected)


def _map_audio_ext(input_audio_ext: InputAudioExt) -> OutputAudioExt:
    """
    Map an input audio extension to an output audio extension.

    Parameters
    ----------
    input_audio_ext : InputAudioExt
        The input audio extension.

    Returns
    -------
    OutputAudioExt
        The output audio extension.
    """
    match input_audio_ext:
        case "m4a":
            return "ipod"
        case "aac":
            return "adts"
        case _:
            return input_audio_ext


def _mix_audio(
    main_vocal_path: str,
    backup_vocal_path: str,
    instrumental_path: str,
    main_gain: int,
    backup_gain: int,
    inst_gain: int,
    output_format: InputAudioExt,
    output_sr: int,
    output_path: str,
) -> None:
    """
    Mix main vocals, backup vocals and instrumentals.

    Parameters
    ----------
    main_vocal_path : str
        The path of an audio file containing main vocals.
    backup_vocal_path : str
        The path of an audio file containing backup vocals.
    instrumental_path : str
        The path of an audio file containing instrumentals.
    main_gain : int
        The gain to apply to the main vocals.
    backup_gain : int
        The gain to apply to the backup vocals.
    inst_gain : int
        The gain to apply to the instrumental.
    output_format : InputAudioExt
        The format to save the mixed audio file in.
    output_sr : int
        The sample rate to use for the mixed audio file.
    output_path : str
        The path to save the mixed audio file to.
    """
    main_vocal_audio = AudioSegment.from_wav(main_vocal_path) + main_gain
    backup_vocal_audio = AudioSegment.from_wav(backup_vocal_path) + backup_gain
    instrumental_audio = AudioSegment.from_wav(instrumental_path) + inst_gain
    combined_audio = main_vocal_audio.overlay(backup_vocal_audio).overlay(
        instrumental_audio
    )
    combined_audio_resampled = combined_audio.set_frame_rate(output_sr)
    mapped_output_format = _map_audio_ext(output_format)
    combined_audio_resampled.export(output_path, format=mapped_output_format)


def get_named_song_dirs() -> list[tuple[str, str]]:
    """
    Get the names and paths of all song directories.

    Returns
    -------
    list[tuple[str, str]]
        A list of tuples containing the name and path of each song directory.
    """
    input_paths = _get_input_audio_paths()
    named_song_dirs: list[tuple[str, str]] = []

    for path in input_paths:
        song_dir, song_basename = os.path.split(path)
        song_name = (
            os.path.splitext(song_basename)[0]
            .removeprefix("0_")
            .removesuffix("_Original")
        )
        named_song_dirs.append((song_name, song_dir))
    return sorted(named_song_dirs, key=lambda x: x[0])


def convert_to_stereo(
    song_path: str,
    song_dir: str,
    progress_bar: gr.Progress | None = None,
    percentage: float = 0.0,
) -> str:
    """
    Converts an audio file to stereo.

    Parameters
    ----------
    song_path : str
        The path to the audio file to convert.
    song_dir : str
        The path to the directory where the stereo audio file will be saved.
    progress_bar : gr.Progress, optional
        Gradio progress bar to update.
    percentage : float, default=0.0
        Percentage to display in the progress bar.

    Returns
    -------
    str
        The path to the stereo audio file.

    Raises
    ------
    InputMissingError
        If no audio file or song directory path is provided.
    PathNotFoundError
        If the provided audio file or song directory path does not point
        to an existing file or directory.
    """
    if not song_path:
        raise InputMissingError("Input song missing!")
    if not os.path.isfile(song_path):
        raise PathNotFoundError("Input song does not exist!")
    if not song_dir:
        raise InputMissingError("Song directory missing!")
    if not os.path.isdir(song_dir):
        raise PathNotFoundError("Song directory does not exist!")

    stereo_path = song_path

    song_info = pydub_utils.mediainfo(song_path)
    if song_info["channels"] == "1":
        arg_dict = {
            "input-files": [
                {"name": os.path.basename(song_path), "hash": get_file_hash(song_path)}
            ],
        }
        stereo_path_base = _get_unique_base_path(
            song_dir, "0_Stereo", arg_dict, progress_bar, percentage
        )
        stereo_path = f"{stereo_path_base}.wav"
        stereo_json_path = f"{stereo_path_base}.json"
        if not (os.path.exists(stereo_path) and os.path.exists(stereo_json_path)):
            display_progress(
                "[~] Converting song to stereo...", percentage, progress_bar
            )
            command = shlex.split(
                f'ffmpeg -y -loglevel error -i "{song_path}" -ac 2 -f wav'
                f' "{stereo_path}"'
            )
            subprocess.run(command)
            json_dump(arg_dict, stereo_json_path)

    return stereo_path


def _make_song_dir(
    song_input: str, progress_bar: gr.Progress | None = None, percentage: float = 0.0
) -> tuple[str, InputType]:
    """
    Create a song directory for a given song input.

    * If the song input is a YouTube URL,
    the song directory will be named after the video id.
    * If the song input is a local audio file,
    the song directory will be named after the file hash.
    * if the song input is a song directory,
    the song directory will be used as is.

    Parameters
    ----------
    song_input : str
        The song input to create a directory for.
    progress_bar : gr.Progress, optional
        Gradio progress bar to update.
    percentage : float, default=0.0
        Percentage to display in the progress bar.

    Returns
    -------
    song_dir : str
        The path to the created song directory.
    input_type : InputType
        The type of input provided.

    Raises
    ------
    InputMissingError
        If no song input is provided.
    InvalidPathError
        If the provided YouTube URL is invalid or if the provided song directory
        is not located in the root of the intermediate audio directory.
    PathNotFoundError
        If the provided song input is neither a valid HTTPS-based URL
        nor the path of an existing song directory or audio file.
    """
    # if song directory
    if os.path.isdir(song_input):
        if not PurePath(song_input).parent == PurePath(INTERMEDIATE_AUDIO_DIR):
            raise InvalidPathError(
                "Song directory not located in the root of the intermediate audio"
                " directory."
            )
        display_progress(
            "[~] Using existing song directory...", percentage, progress_bar
        )
        input_type = "local"
        return song_input, input_type

    display_progress("[~] Creating song directory...", percentage, progress_bar)
    # if youtube url
    if urlparse(song_input).scheme == "https":
        input_type = "yt"
        song_id = _get_youtube_video_id(song_input)
        if song_id is None:
            raise InvalidPathError("Invalid YouTube url!")
    # if local audio file
    elif os.path.isfile(song_input):
        input_type = "local"
        song_id = get_file_hash(song_input)
    else:
        raise PathNotFoundError(f"Song input {song_input} does not exist.")

    song_dir = os.path.join(INTERMEDIATE_AUDIO_DIR, song_id)

    Path(song_dir).mkdir(parents=True, exist_ok=True)

    return song_dir, input_type


def retrieve_song(
    song_input: str,
    progress_bar: gr.Progress | None = None,
    percentages: tuple[float, float, float] = (0, 0.33, 0.67),
) -> tuple[str, str]:
    """
    Retrieve a song from a YouTube URL, local audio file or a song directory.

    Parameters
    ----------
    song_input : str
        A Youtube URL, the path of a local audio file
        or the path of a song directory.
    progress_bar : gr.Progress, optional
        Gradio progress bar to update.
    percentages : tuple[float,float,float], default=(0, 0.33, 0.67)
        Percentages to display in the progress bar.

    Returns
    -------
    song_path : str
        The path to the retrieved audio file
    song_dir : str
        The path to the song directory containing it.

    Raises
    ------
    InputMissingError
        If no song input is provided.
    InvalidPathError
        If the provided Youtube URL is invalid or if the provided song directory
        is not located in the root of the intermediate audio directory.
    PathNotFoundError
        If the provided song input is neither a valid HTTPS-based URL
        nor the path of an existing song directory or audio file.
    """
    if not song_input:
        raise InputMissingError(
            "Song input missing! Please provide a valid YouTube url, local audio file"
            " path or cached song directory path."
        )

    song_dir, input_type = _make_song_dir(song_input, progress_bar, percentages[0])
    orig_song_path = _get_input_audio_path(song_dir)

    if not orig_song_path:
        if input_type == "yt":
            display_progress("[~] Downloading song...", percentages[1], progress_bar)
            song_link = song_input.split("&")[0]
            orig_song_path = _yt_download(song_link, song_dir)
        else:
            display_progress("[~] Copying song...", percentages[1], progress_bar)
            song_input_base = os.path.basename(song_input)
            song_input_name, song_input_ext = os.path.splitext(song_input_base)
            orig_song_name = f"0_{song_input_name}_Original"
            orig_song_path = os.path.join(song_dir, orig_song_name + song_input_ext)
            shutil.copyfile(song_input, orig_song_path)

    stereo_path = convert_to_stereo(
        orig_song_path, song_dir, progress_bar, percentages[2]
    )
    return stereo_path, song_dir


def separate_vocals(
    song_path: str,
    song_dir: str,
    stereofy: bool = True,
    progress_bar: gr.Progress | None = None,
    percentages: tuple[float, float] = (0.0, 0.5),
) -> tuple[str, str]:
    """
    Separate a song into vocals and instrumentals.

    Parameters
    ----------
    song_path : str
        The path to the song to separate.
    song_dir : str
        The path to the song directory where the
        separated vocals and instrumentals will be saved.
    stereofy : bool, default=True
        Whether to convert the song to stereo
        before separating its vocals and instrumentals.
    progress_bar : gr.Progress, optional
        Gradio progress bar to update.
    percentages : tuple[float,float], default=(0.0, 0.5)
        Percentages to display in the progress bar.

    Returns
    -------
    vocals_path : str
        The path to the separated vocals.
    instrumentals_path : str
        The path to the separated instrumentals.

    Raises
    ------
    InputMissingError
        If no song path or song directory path is provided.
    PathNotFoundError
        If the provided song path or song directory path does not point
        to an existing file or directory.
    """
    if not song_path:
        raise InputMissingError("Input song missing!")
    if not os.path.isfile(song_path):
        raise PathNotFoundError("Input song does not exist!")
    if not song_dir:
        raise InputMissingError("Song directory missing!")
    if not os.path.isdir(song_dir):
        raise PathNotFoundError("Song directory does not exist!")

    song_path = (
        convert_to_stereo(song_path, song_dir, progress_bar, percentages[0])
        if stereofy
        else song_path
    )

    arg_dict = {
        "input-files": [
            {"name": os.path.basename(song_path), "hash": get_file_hash(song_path)}
        ],
    }

    vocals_path_base = _get_unique_base_path(
        song_dir, "1_Vocals", arg_dict, progress_bar, percentages[1]
    )

    instrumentals_path_base = _get_unique_base_path(
        song_dir, "1_Instrumental", arg_dict, progress_bar, percentages[1]
    )

    vocals_path = f"{vocals_path_base}.wav"
    vocals_json_path = f"{vocals_path_base}.json"
    instrumentals_path = f"{instrumentals_path_base}.wav"
    instrumentals_json_path = f"{instrumentals_path_base}.json"

    if not (
        os.path.exists(vocals_path)
        and os.path.exists(vocals_json_path)
        and os.path.exists(instrumentals_path)
        and os.path.exists(instrumentals_json_path)
    ):
        display_progress(
            "[~] Separating vocals from instrumentals...", percentages[1], progress_bar
        )
        SEPARATOR.arch_specific_params["MDX"]["segment_size"] = 512
        SEPARATOR.load_model("UVR-MDX-NET-Voc_FT.onnx")
        temp_instrumentals_name, temp_vocals_name = SEPARATOR.separate(song_path)
        shutil.move(
            os.path.join(INTERMEDIATE_AUDIO_DIR, temp_instrumentals_name),
            instrumentals_path,
        )
        shutil.move(os.path.join(INTERMEDIATE_AUDIO_DIR, temp_vocals_name), vocals_path)
        json_dump(arg_dict, vocals_json_path)
        json_dump(arg_dict, instrumentals_json_path)
    return vocals_path, instrumentals_path


def separate_main_vocals(
    vocals_path: str,
    song_dir: str,
    stereofy: bool = True,
    progress_bar: gr.Progress | None = None,
    percentages: tuple[float, float] = (0.0, 0.5),
) -> tuple[str, str]:
    """
    Separate a vocals track into main vocals and backup vocals.

    Parameters
    ----------
    vocals_path : str
        The path to the vocals track to separate.
    song_dir : str
        The path to the directory where the separated main vocals
        and backup vocals will be saved.
    stereofy : bool, default=True
        Whether to convert the vocals track to stereo
        before separating its main vocals and backup vocals.
    progress_bar : gr.Progress, optional
        Gradio progress bar to update.
    percentages : tuple[float,float], default=(0.0, 0.5)
        Percentages to display in the progress bar.

    Returns
    -------
    main_vocals_path : str
        The path to the separated main vocals.
    backup_vocals_path : str
        The path to the separated backup vocals.

    Raises
    ------
    InputMissingError
        If no vocals track path or song directory path is provided.
    PathNotFoundError
        If the provided vocals path or song directory path does not point
        to an existing file or directory.
    """
    if not vocals_path:
        raise InputMissingError("Vocals missing!")
    if not os.path.isfile(vocals_path):
        raise PathNotFoundError("Vocals do not exist!")
    if not song_dir:
        raise InputMissingError("Song directory missing!")
    if not os.path.isdir(song_dir):
        raise PathNotFoundError("song directory does not exist!")

    vocals_path = (
        convert_to_stereo(vocals_path, song_dir, progress_bar, percentages[0])
        if stereofy
        else vocals_path
    )

    arg_dict = {
        "input-files": [
            {"name": os.path.basename(vocals_path), "hash": get_file_hash(vocals_path)}
        ],
    }

    main_vocals_path_base = _get_unique_base_path(
        song_dir, "2_Vocals_Main", arg_dict, progress_bar, percentages[1]
    )

    backup_vocals_path_base = _get_unique_base_path(
        song_dir, "2_Vocals_Backup", arg_dict, progress_bar, percentages[1]
    )

    main_vocals_path = f"{main_vocals_path_base}.wav"
    main_vocals_json_path = f"{main_vocals_path_base}.json"
    backup_vocals_path = f"{backup_vocals_path_base}.wav"
    backup_vocals_json_path = f"{backup_vocals_path_base}.json"

    if not (
        os.path.exists(main_vocals_path)
        and os.path.exists(main_vocals_json_path)
        and os.path.exists(backup_vocals_path)
        and os.path.exists(backup_vocals_json_path)
    ):
        display_progress(
            "[~] Separating main vocals from backup vocals...",
            percentages[1],
            progress_bar,
        )
        SEPARATOR.arch_specific_params["MDX"]["segment_size"] = 512
        SEPARATOR.load_model("UVR_MDXNET_KARA_2.onnx")
        temp_main_vocals_name, temp_backup_vocals_name = SEPARATOR.separate(vocals_path)
        shutil.move(
            os.path.join(INTERMEDIATE_AUDIO_DIR, temp_main_vocals_name),
            main_vocals_path,
        )
        shutil.move(
            os.path.join(INTERMEDIATE_AUDIO_DIR, temp_backup_vocals_name),
            backup_vocals_path,
        )
        json_dump(arg_dict, main_vocals_json_path)
        json_dump(arg_dict, backup_vocals_json_path)
    return main_vocals_path, backup_vocals_path


def dereverb_vocals(
    vocals_path: str,
    song_dir: str,
    stereofy: bool = True,
    progress_bar: gr.Progress | None = None,
    percentages: tuple[float, float] = (0.0, 0.5),
) -> tuple[str, str]:
    """
    De-reverb a vocals track.

    Parameters
    ----------
    vocals_path : str
        The path to the vocals track to de-reverb.
    song_dir : str
        The path to the directory where the de-reverbed vocals will be saved.
    stereofy : bool, default=True
        Whether to convert the vocals track to stereo before de-reverbing it.
    progress_bar : gr.Progress, optional
        Gradio progress bar to update.
    percentages : tuple[float,float], default=(0.0, 0.5)
        Percentages to display in the progress bar.

    Returns
    -------
    vocals_dereverb_path : str
        The path to the de-reverbed vocals.
    vocals_reverb_path : str
        The path to the reverb of the vocals.

    Raises
    ------
    InputMissingError
        If no vocals track path or song directory path is provided.
    PathNotFoundError
        If the provided vocals path or song directory path does not point
        to an existing file or directory.
    """
    if not vocals_path:
        raise InputMissingError("Vocals missing!")
    if not os.path.isfile(vocals_path):
        raise PathNotFoundError("Vocals do not exist!")
    if not song_dir:
        raise InputMissingError("Song directory missing!")
    if not os.path.isdir(song_dir):
        raise PathNotFoundError("song directory does not exist!")

    vocals_path = (
        convert_to_stereo(vocals_path, song_dir, progress_bar, percentages[0])
        if stereofy
        else vocals_path
    )

    arg_dict = {
        "input-files": [
            {"name": os.path.basename(vocals_path), "hash": get_file_hash(vocals_path)}
        ],
    }

    vocals_dereverb_path_base = _get_unique_base_path(
        song_dir, "3_Vocals_DeReverb", arg_dict, progress_bar, percentages[1]
    )
    vocals_reverb_path_base = _get_unique_base_path(
        song_dir, "3_Vocals_Reverb", arg_dict, progress_bar, percentages[1]
    )

    vocals_dereverb_path = f"{vocals_dereverb_path_base}.wav"
    vocals_dereverb_json_path = f"{vocals_dereverb_path_base}.json"

    vocals_reverb_path = f"{vocals_reverb_path_base}.wav"
    vocals_reverb_json_path = f"{vocals_reverb_path_base}.json"

    if not (
        os.path.exists(vocals_dereverb_path)
        and os.path.exists(vocals_dereverb_json_path)
        and os.path.exists(vocals_reverb_path)
        and os.path.exists(vocals_reverb_json_path)
    ):
        display_progress("[~] De-reverbing vocals...", percentages[1], progress_bar)
        SEPARATOR.arch_specific_params["MDX"]["segment_size"] = 256
        SEPARATOR.load_model("Reverb_HQ_By_FoxJoy.onnx")
        temp_vocals_dereverb_name, temp_vocals_reverb_name = SEPARATOR.separate(
            vocals_path
        )
        shutil.move(
            os.path.join(INTERMEDIATE_AUDIO_DIR, temp_vocals_dereverb_name),
            vocals_dereverb_path,
        )
        shutil.move(
            os.path.join(INTERMEDIATE_AUDIO_DIR, temp_vocals_reverb_name),
            vocals_reverb_path,
        )
        json_dump(arg_dict, vocals_dereverb_json_path)
        json_dump(arg_dict, vocals_reverb_json_path)
    return vocals_dereverb_path, vocals_reverb_path


def convert_vocals(
    vocals_path: str,
    song_dir: str,
    voice_model: str,
    pitch_change_octaves: int = 0,
    pitch_change_semi_tones: int = 0,
    index_rate: float = 0.5,
    filter_radius: int = 3,
    rms_mix_rate: float = 0.25,
    protect: float = 0.33,
    f0_method: F0Method = "rmvpe",
    crepe_hop_length: int = 128,
    progress_bar: gr.Progress | None = None,
    percentage: float = 0.0,
) -> str:
    """
    Convert a vocals track using a voice model.

    Parameters
    ----------
    vocals_path : str
        The path to the vocals track to convert.
    song_dir : str
        The path to the directory where the converted vocals will be saved.
    voice_model : str
        The name of the voice model to use.
    pitch_change_octaves : int, default=0
        The number of octaves to pitch-shift the converted vocals by.
    pitch_change_semi_tones : int, default=0
        The number of semi-tones to pitch-shift the converted vocals by.
    index_rate : float, default=0.5
        The influence of the index file on the vocal conversion.
    filter_radius : int, default=3
        The filter radius to use for the vocal conversion.
    rms_mix_rate : float, default=0.25
        The blending rate of the volume envelope of the converted vocals.
    protect : float, default=0.33
        The protection rate for consonants and breathing sounds.
    f0_method : F0Method, default="rmvpe"
        The method to use for pitch extraction.
    crepe_hop_length : int, default=128
        The hop length to use for crepe-based pitch extraction.
    progress_bar : gr.Progress, optional
        Gradio progress bar to update.
    percentage : float, default=0.0
        Percentage to display in the progress bar.

    Returns
    -------
    str
        The path to the converted vocals.

    Raises
    ------
    InputMissingError
        If no vocals track path, song directory path or voice model name is provided.
    PathNotFoundError
        If the provided vocals path, song directory path or voice model name
        does not point to an existing file or directory.
    """
    if not vocals_path:
        raise InputMissingError("Vocals missing!")
    if not os.path.isfile(vocals_path):
        raise PathNotFoundError("Vocals do not exist!")
    if not song_dir:
        raise InputMissingError("Song directory missing!")
    if not os.path.isdir(song_dir):
        raise PathNotFoundError("song directory does not exist!")
    if not voice_model:
        raise InputMissingError("Voice model missing!")
    if not os.path.isdir(os.path.join(RVC_MODELS_DIR, voice_model)):
        raise PathNotFoundError("Voice model does not exist!")

    pitch_change = pitch_change_octaves * 12 + pitch_change_semi_tones
    hop_length_suffix = "" if f0_method != "mangio-crepe" else f"_{crepe_hop_length}"
    arg_dict = {
        "input-files": [
            {"name": os.path.basename(vocals_path), "hash": get_file_hash(vocals_path)}
        ],
        "voice-model": voice_model,
        "pitch-shift": pitch_change,
        "index-rate": index_rate,
        "filter-radius": filter_radius,
        "rms-mix-rate": rms_mix_rate,
        "protect": protect,
        "f0-method": f"{f0_method}{hop_length_suffix}",
    }

    converted_vocals_path_base = _get_unique_base_path(
        song_dir, "4_Vocals_Converted", arg_dict, progress_bar, percentage
    )
    converted_vocals_path = f"{converted_vocals_path_base}.wav"
    converted_vocals_json_path = f"{converted_vocals_path_base}.json"

    if not (
        os.path.exists(converted_vocals_path)
        and os.path.exists(converted_vocals_json_path)
    ):
        display_progress("[~] Converting vocals using RVC...", percentage, progress_bar)
        _convert_voice(
            voice_model,
            vocals_path,
            converted_vocals_path,
            pitch_change,
            f0_method,
            index_rate,
            filter_radius,
            rms_mix_rate,
            protect,
            crepe_hop_length,
            44100,
        )
        json_dump(arg_dict, converted_vocals_json_path)
    return converted_vocals_path


def postprocess_vocals(
    vocals_path: str,
    song_dir: str,
    reverb_rm_size: float = 0.15,
    reverb_wet: float = 0.2,
    reverb_dry: float = 0.8,
    reverb_damping: float = 0.7,
    progress_bar: gr.Progress | None = None,
    percentage: float = 0.0,
) -> str:
    """
    Apply high-pass filter, compressor and reverb effects to a vocals track.

    Parameters
    ----------
    vocals_path : str
        The path to the vocals track to add effects to.
    song_dir : str
        The path to the directory where the effected vocals will be saved.
    reverb_rm_size : float, default=0.15
        The room size of the reverb effect.
    reverb_wet : float, default=0.2
        The wet level of the reverb effect.
    reverb_dry : float, default=0.8
        The dry level of the reverb effect.
    reverb_damping : float, default=0.7
        The damping of the reverb effect.
    progress_bar : gr.Progress, optional
        Gradio progress bar to update.
    percentage : float, default=0.0
        Percentage to display in the progress bar.

    Returns
    -------
    str
        The path to the effected vocals.

    Raises
    ------
    InputMissingError
        If no vocals track path or song directory path is provided.
    PathNotFoundError
        If the provided vocals path or song directory path does not point
        to an existing file or directory.
    """
    if not vocals_path:
        raise InputMissingError("Vocals missing!")
    if not os.path.isfile(vocals_path):
        raise PathNotFoundError("Vocals do not exist!")
    if not song_dir:
        raise InputMissingError("Song directory missing!")
    if not os.path.isdir(song_dir):
        raise PathNotFoundError("song directory does not exist!")

    arg_dict = {
        "input-files": [
            {"name": os.path.basename(vocals_path), "hash": get_file_hash(vocals_path)}
        ],
        "reverb-room-size": reverb_rm_size,
        "reverb-wet": reverb_wet,
        "reverb-dry": reverb_dry,
        "reverb-damping": reverb_damping,
    }

    vocals_mixed_path_base = _get_unique_base_path(
        song_dir, "5_Vocals_Postprocessed", arg_dict, progress_bar, percentage
    )

    vocals_mixed_path = f"{vocals_mixed_path_base}.wav"
    vocals_mixed_json_path = f"{vocals_mixed_path_base}.json"

    if not (
        os.path.exists(vocals_mixed_path) and os.path.exists(vocals_mixed_json_path)
    ):
        display_progress(
            "[~] Applying audio effects to vocals...", percentage, progress_bar
        )
        _add_audio_effects(
            vocals_path,
            vocals_mixed_path,
            reverb_rm_size,
            reverb_wet,
            reverb_dry,
            reverb_damping,
        )
        json_dump(arg_dict, vocals_mixed_json_path)
    return vocals_mixed_path


def pitch_shift_background(
    instrumentals_path: str,
    backup_vocals_path: str,
    song_dir: str,
    pitch_change: int = 0,
    progress_bar: gr.Progress | None = None,
    percentages: tuple[float, float] = (0.0, 0.5),
) -> tuple[str, str]:
    """
    Pitch shift instrumentals and backup vocals by a given number of semi-tones.

    Parameters
    ----------
    instrumentals_path : str
        The path to the instrumentals to pitch shift.
    backup_vocals_path : str
        The path to the backup vocals to pitch shift.
    song_dir : str
        The path to the directory where the pitch-shifted instrumentals
        and backup vocals will be saved.
    pitch_change : int, default=0
        The number of semi-tones to pitch-shift the instrumentals
        and backup vocals by.
    progress_bar : gr.Progress, optional
        Gradio progress bar to update.
    percentages : tuple[float,float], default=(0.0, 0.5)
        Percentages to display in the progress bar.

    Returns
    -------
    instrumentals_shifted_path : str
        The path to the pitch-shifted instrumentals.
    backup_vocals_shifted_path : str
        The path to the pitch-shifted backup vocals.

    Raises
    ------
    InputMissingError
        If no instrumentals path, backup vocals path or song directory path is provided.
    PathNotFoundError
        If the provided instrumentals path, backup vocals path or song directory path
        does not point to an existing file or directory.
    """
    if not instrumentals_path:
        raise InputMissingError("Instrumentals missing!")
    if not os.path.isfile(instrumentals_path):
        raise PathNotFoundError("Instrumentals do not exist!")
    if not backup_vocals_path:
        raise InputMissingError("Backup vocals missing!")
    if not os.path.isfile(backup_vocals_path):
        raise PathNotFoundError("Backup vocals do not exist!")
    if not song_dir:
        raise InputMissingError("Song directory missing!")
    if not os.path.isdir(song_dir):
        raise PathNotFoundError("song directory does not exist!")

    instrumentals_shifted_path = instrumentals_path
    backup_vocals_shifted_path = backup_vocals_path

    if pitch_change != 0:
        instrumentals_dict = {
            "input-files": [
                {
                    "name": os.path.basename(instrumentals_path),
                    "hash": get_file_hash(instrumentals_path),
                }
            ],
            "pitch-shift": pitch_change,
        }

        instrumentals_shifted_path_base = _get_unique_base_path(
            song_dir,
            "6_Instrumental_Shifted",
            instrumentals_dict,
            progress_bar,
            percentages[0],
        )

        instrumentals_shifted_path = f"{instrumentals_shifted_path_base}.wav"
        instrumentals_shifted_json_path = f"{instrumentals_shifted_path_base}.json"

        if not (
            os.path.exists(instrumentals_shifted_path)
            and os.path.exists(instrumentals_shifted_json_path)
        ):
            display_progress(
                "[~] Applying pitch shift to instrumentals",
                percentages[0],
                progress_bar,
            )
            _pitch_shift(instrumentals_path, instrumentals_shifted_path, pitch_change)
            json_dump(instrumentals_dict, instrumentals_shifted_json_path)

        backup_vocals_dict = {
            "input-files": [
                {
                    "name": os.path.basename(backup_vocals_path),
                    "hash": get_file_hash(backup_vocals_path),
                }
            ],
            "pitch-shift": pitch_change,
        }

        backup_vocals_shifted_path_base = _get_unique_base_path(
            song_dir,
            "6_Vocals_Backup_Shifted",
            backup_vocals_dict,
            progress_bar,
            percentages[1],
        )
        backup_vocals_shifted_path = f"{backup_vocals_shifted_path_base}.wav"
        backup_vocals_shifted_json_path = f"{backup_vocals_shifted_path_base}.json"
        if not (
            os.path.exists(backup_vocals_shifted_path)
            and os.path.exists(backup_vocals_shifted_json_path)
        ):
            display_progress(
                "[~] Applying pitch shift to backup vocals",
                percentages[1],
                progress_bar,
            )
            _pitch_shift(backup_vocals_path, backup_vocals_shifted_path, pitch_change)
            json_dump(backup_vocals_dict, backup_vocals_shifted_json_path)
    return instrumentals_shifted_path, backup_vocals_shifted_path


def _get_voice_model(
    mixed_vocals_path: str | None = None, song_dir: str | None = None
) -> str:
    """
    Infer the voice model used for vocal conversion from a
    mixed vocals file in a given song directory.

    If the voice model cannot be inferred, "Unknown" is returned.

    Parameters
    ----------
    mixed_vocals_path : str, optional
        The path to a mixed vocals file.
    song_dir : str, optional
        The path to a song directory.

    Returns
    -------
    str
        The voice model used for vocal conversion.
    """
    voice_model = "Unknown"
    if not (mixed_vocals_path and song_dir):
        return voice_model
    mixed_vocals_stem = get_path_stem(mixed_vocals_path)
    mixed_vocals_json_path = os.path.join(song_dir, f"{mixed_vocals_stem}.json")
    if not os.path.isfile(mixed_vocals_json_path):
        return voice_model
    mixed_vocals_json_dict = json_load(mixed_vocals_json_path)
    input_files = mixed_vocals_json_dict.get("input-files")
    input_path = input_files[0].get("name") if input_files else None
    if not input_path:
        return voice_model
    input_stem = get_path_stem(input_path)
    converted_vocals_json_path = os.path.join(song_dir, f"{input_stem}.json")
    if not os.path.isfile(converted_vocals_json_path):
        return voice_model
    converted_vocals_dict = json_load(converted_vocals_json_path)
    return converted_vocals_dict.get("voice-model", voice_model)


def get_song_cover_name(
    mixed_vocals_path: str | None = None,
    song_dir: str | None = None,
    voice_model: str | None = None,
    progress_bar: gr.Progress | None = None,
    percentage: float = 0.0,
) -> str:
    """
    Generates a suitable name for a cover of a song based on that song's
    original name and the voice model used for vocal conversion.

    If the path of an existing song directory is provided, the original song
    name is inferred from that directory. If a voice model is not provided but
    the path of an existing song directory and the path of a mixed
    vocals file in that directory are provided, then the voice model is
    inferred from the mixed vocals file.

    Parameters
    ----------
    mixed_vocals_path : str, optional
        The path to a mixed vocals file.
    song_dir : str, optional
        The path to a song directory.
    voice_model : str, optional
        A voice model name.
    progress_bar : gr.Progress, optional
        Gradio progress bar to update.
    percentage : float, default=0.0
        Percentage to display in the progress bar.

    Returns
    -------
    str
        The song cover name
    """
    display_progress("[~] Getting song cover name...", percentage, progress_bar)

    orig_song_path = _get_input_audio_path(song_dir) if song_dir else None
    orig_song_name = (
        (get_path_stem(orig_song_path).removeprefix("0_").removesuffix("_Original"))
        if orig_song_path
        else "Unknown"
    )

    voice_model = voice_model or _get_voice_model(mixed_vocals_path, song_dir)

    return f"{orig_song_name} ({voice_model} Ver)"


def mix_song_cover(
    main_vocals_path: str,
    instrumentals_path: str,
    backup_vocals_path: str,
    song_dir: str,
    main_gain: int = 0,
    inst_gain: int = 0,
    backup_gain: int = 0,
    output_sr: int = 44100,
    output_format: InputAudioExt = "mp3",
    output_name: str | None = None,
    progress_bar: gr.Progress | None = None,
    percentages: tuple[float, float] = (0.0, 0.5),
) -> str:
    """
    Mix main vocals, instrumentals, and backup vocals to create a song cover.

    Parameters
    ----------
    main_vocals_path : str
        The path to the main vocals to mix.
    instrumentals_path : str
        The path to the instrumentals to mix.
    backup_vocals_path : str
        The path to the backup vocals to mix.
    song_dir : str
        The path to the song directory where the song cover will be saved.
    main_gain : int, default=0
        The gain to apply to the main vocals.
    inst_gain : int, default=0
        The gain to apply to the instrumentals.
    backup_gain : int, default=0
        The gain to apply to the backup vocals.
    output_sr : int, default=44100
        The sample rate of the song cover.
    output_format : InputAudioExt, default="mp3"
        The audio format of the song cover.
    output_name : str, optional
        The name of the song cover.
    progress_bar : gr.Progress, optional
        Gradio progress bar to update.
    percentages : tuple[float,float], default=(0.0, 0.5)
        Percentages to display in the progress bar.

    Returns
    -------
    str
        The path to the song cover.

    Raises
    ------
    InputMissingError
        If no main vocals, instrumentals, backup vocals or song directory path is provided.
    PathNotFoundError
        If the provided main vocals, instrumentals, backup vocals or song directory path
        does not point to an existing file or directory.
    """
    if not main_vocals_path:
        raise InputMissingError("Main vocals missing!")
    if not os.path.isfile(main_vocals_path):
        raise PathNotFoundError("Main vocals do not exist!")
    if not instrumentals_path:
        raise InputMissingError("Instrumentals missing!")
    if not os.path.isfile(instrumentals_path):
        raise PathNotFoundError("Instrumentals do not exist!")
    if not backup_vocals_path:
        raise InputMissingError("Backup vocals missing!")
    if not os.path.isfile(backup_vocals_path):
        raise PathNotFoundError("Backup vocals do not exist!")
    if not song_dir:
        raise InputMissingError("Song directory missing!")
    if not os.path.isdir(song_dir):
        raise PathNotFoundError("song directory does not exist!")

    arg_dict = {
        "input-files": [
            {
                "name": os.path.basename(main_vocals_path),
                "hash": get_file_hash(main_vocals_path),
            },
            {
                "name": os.path.basename(instrumentals_path),
                "hash": get_file_hash(instrumentals_path),
            },
            {
                "name": os.path.basename(backup_vocals_path),
                "hash": get_file_hash(backup_vocals_path),
            },
        ],
        "main-gain": main_gain,
        "instrument-gain": inst_gain,
        "backup-gain": backup_gain,
        "sample-rate": output_sr,
    }

    mixdown_path_base = _get_unique_base_path(
        song_dir, "7_Mixdown", arg_dict, progress_bar, percentages[0]
    )
    mixdown_path = f"{mixdown_path_base}.{output_format}"
    mixdown_json_path = f"{mixdown_path_base}.json"

    if not (os.path.exists(mixdown_path) and os.path.exists(mixdown_json_path)):
        display_progress(
            "[~] Mixing main vocals, instrumentals, and backup vocals...",
            percentages[0],
            progress_bar,
        )

        _mix_audio(
            main_vocals_path,
            backup_vocals_path,
            instrumentals_path,
            main_gain,
            backup_gain,
            inst_gain,
            output_format,
            output_sr,
            mixdown_path,
        )
        json_dump(arg_dict, mixdown_json_path)

    output_name = output_name or get_song_cover_name(
        main_vocals_path, song_dir, None, progress_bar, percentages[1]
    )
    song_cover_path = os.path.join(OUTPUT_AUDIO_DIR, f"{output_name}.{output_format}")
    os.makedirs(OUTPUT_AUDIO_DIR, exist_ok=True)
    shutil.copyfile(mixdown_path, song_cover_path)

    return song_cover_path


def run_pipeline(
    song_input: str,
    voice_model: str,
    pitch_change_vocals: int = 0,
    pitch_change_all: int = 0,
    index_rate: float = 0.5,
    filter_radius: int = 3,
    rms_mix_rate: float = 0.25,
    protect: float = 0.33,
    f0_method: F0Method = "rmvpe",
    crepe_hop_length: int = 128,
    reverb_rm_size: float = 0.15,
    reverb_wet: float = 0.2,
    reverb_dry: float = 0.8,
    reverb_damping: float = 0.7,
    main_gain: int = 0,
    inst_gain: int = 0,
    backup_gain: int = 0,
    output_sr: int = 44100,
    output_format: InputAudioExt = "mp3",
    output_name: str | None = None,
    return_files: bool = False,
    progress_bar: gr.Progress | None = None,
) -> str | tuple[str, ...]:
    """
    Run the song cover generation pipeline.

    Parameters
    ----------
    song_input : str
        A Youtube URL, the path of a local audio file or the path of a song directory.
    voice_model : str
        The name of the voice model to use for vocal conversion.
    pitch_change_vocals : int, default=0
        The number of octaves to pitch-shift the converted vocals by.
    pitch_change_all : int, default=0
        The number of semi-tones to pitch-shift the converted vocals,
        instrumentals, and backup vocals by.
    index_rate : float, default=0.5
        The influence of the index file on the vocal conversion.
    filter_radius : int, default=3
        The filter radius to use for the vocal conversion.
    rms_mix_rate : float, default=0.25
        The blending rate of the volume envelope of the converted vocals.
    protect : float, default=0.33
        The protection rate for consonants and breathing sounds in the vocal conversion.
    f0_method : F0Method, default="rmvpe"
        The method to use for pitch extraction in the vocal conversion.
    crepe_hop_length : int, default=128
        The hop length to use for crepe-based pitch extraction.
    reverb_rm_size : float, default=0.15
        The room size of the reverb effect to apply to the converted vocals.
    reverb_wet : float, default=0.2
        The wet level of the reverb effect to apply to the converted vocals.
    reverb_dry : float, default=0.8
        The dry level of the reverb effect to apply to the converted vocals.
    reverb_damping : float, default=0.7
        The damping of the reverb effect to apply to the converted vocals.
    main_gain : int, default=0
        The gain to apply to the post-processed vocals.
    inst_gain : int, default=0
        The gain to apply to the pitch-shifted instrumentals.
    backup_gain : int, default=0
        The gain to apply to the pitch-shifted backup vocals.
    output_sr : int, default=44100
        The sample rate of the song cover.
    output_format : InputAudioExt, default="mp3"
        The audio format of the song cover.
    output_name : str, optional
        The name of the song cover.
    return_files : bool, default=False
        Whether to return the paths of the generated intermediate audio files.
    progress_bar : gr.Progress, optional
        Gradio progress bar to update.

    Returns
    -------
    str | tuple[str,...]
        The path to the generated song cover and, if `return_files=True`,
        also the paths of any generated intermediate audio files.
    """
    if not song_input:
        raise InputMissingError(
            "Song input missing! Please provide a valid YouTube url, local audio file"
            " path or cached song directory path."
        )
    if not voice_model:
        raise InputMissingError("Voice model missing!")
    if not os.path.isdir(os.path.join(RVC_MODELS_DIR, voice_model)):
        raise PathNotFoundError("Voice model does not exist!")
    display_progress("[~] Starting song cover generation pipeline...", 0, progress_bar)
    orig_song_path, song_dir = retrieve_song(
        song_input, progress_bar, (0 / 15, 1 / 15, 2 / 15)
    )
    vocals_path, instrumentals_path = separate_vocals(
        orig_song_path, song_dir, False, progress_bar, (3 / 15, 4 / 15)
    )
    main_vocals_path, backup_vocals_path = separate_main_vocals(
        vocals_path, song_dir, False, progress_bar, (5 / 15, 6 / 15)
    )
    vocals_dereverb_path, reverb_path = dereverb_vocals(
        main_vocals_path, song_dir, False, progress_bar, (7 / 15, 8 / 15)
    )
    converted_vocals_path = convert_vocals(
        vocals_dereverb_path,
        song_dir,
        voice_model,
        pitch_change_vocals,
        pitch_change_all,
        index_rate,
        filter_radius,
        rms_mix_rate,
        protect,
        f0_method,
        crepe_hop_length,
        progress_bar,
        9 / 15,
    )
    vocals_mixed_path = postprocess_vocals(
        converted_vocals_path,
        song_dir,
        reverb_rm_size,
        reverb_wet,
        reverb_dry,
        reverb_damping,
        progress_bar,
        10 / 15,
    )
    instrumentals_shifted_path, backup_vocals_shifted_path = pitch_shift_background(
        instrumentals_path,
        backup_vocals_path,
        song_dir,
        pitch_change_all,
        progress_bar,
        (11 / 15, 12 / 15),
    )

    song_cover_path = mix_song_cover(
        vocals_mixed_path,
        instrumentals_shifted_path or instrumentals_path,
        backup_vocals_shifted_path or backup_vocals_path,
        song_dir,
        main_gain,
        inst_gain,
        backup_gain,
        output_sr,
        output_format,
        output_name,
        progress_bar,
        (13 / 15, 14 / 15),
    )
    if return_files:
        return (
            orig_song_path,
            vocals_path,
            instrumentals_path,
            main_vocals_path,
            backup_vocals_path,
            vocals_dereverb_path,
            reverb_path,
            converted_vocals_path,
            vocals_mixed_path,
            instrumentals_shifted_path,
            backup_vocals_shifted_path,
            song_cover_path,
        )
    else:
        return song_cover_path