kietnt0603 commited on
Commit
c4a1f55
·
1 Parent(s): bd6a347

first commit

Browse files
Files changed (4) hide show
  1. app.py +76 -0
  2. class_names.txt +101 -0
  3. model.py +19 -0
  4. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### 1. Imports and class names setup ###
2
+ import gradio as gr
3
+ import os
4
+ import torch
5
+
6
+ from model import create_model
7
+ from timeit import default_timer as timer
8
+ from typing import Tuple, Dict
9
+
10
+ # Setup class names
11
+ with open("class_names.txt", "r") as f: # reading them in from class_names.txt
12
+ class_names = [food_name.strip() for food_name in f.readlines()]
13
+
14
+ ### 2. Model and transforms preparation ###
15
+
16
+ # Create model
17
+ model, transform = create_model(
18
+ 'vit_base_patch16_224_miil_in21k',
19
+ num_classes=101, # could also use len(class_names)
20
+ )
21
+
22
+ # Load saved weights
23
+ model.load_state_dict(
24
+ torch.load(
25
+ f="/content/drive/MyDrive/CS431-EndCourseProject/vit_b_16_food101_cifar100.pth",
26
+ map_location=torch.device("cpu"), # load to CPU
27
+ )
28
+ )
29
+
30
+ ### 3. Predict function ###
31
+
32
+ # Create predict function
33
+ def predict(img) -> Tuple[Dict, float]:
34
+ """Transforms and performs a prediction on img and returns prediction and time taken.
35
+ """
36
+ # Start the timer
37
+ start_time = timer()
38
+
39
+ # Transform the target image and add a batch dimension
40
+ img = transform(img).unsqueeze(0)
41
+
42
+ # Put model into evaluation mode and turn on inference mode
43
+ model.eval()
44
+ with torch.inference_mode():
45
+ # Pass the transformed image through the model and turn the prediction logits into prediction probabilities
46
+ pred_probs = torch.softmax(effnetb2(img), dim=1)
47
+
48
+ # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
49
+ pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
50
+
51
+ # Calculate the prediction time
52
+ pred_time = round(timer() - start_time, 5)
53
+
54
+ # Return the prediction dictionary and prediction time
55
+ return pred_labels_and_probs, pred_time
56
+
57
+ ### 4. Gradio app ###
58
+
59
+ # Create title, description and article strings
60
+ title = "FoodVision Big 🍔👁"
61
+ description = "An fine-tuned Vision Transformer vision model to classify images of food into 101 different classes."
62
+
63
+ # Create Gradio interface
64
+ demo = gr.Interface(
65
+ fn=predict,
66
+ inputs=gr.Image(type="pil"),
67
+ outputs=[
68
+ gr.Label(num_top_classes=5, label="Predictions"),
69
+ gr.Number(label="Prediction time (s)"),
70
+ ],
71
+ title=title,
72
+ description=description,
73
+ )
74
+
75
+ # Launch the app!
76
+ demo.launch()
class_names.txt ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ apple_pie
2
+ baby_back_ribs
3
+ baklava
4
+ beef_carpaccio
5
+ beef_tartare
6
+ beet_salad
7
+ beignets
8
+ bibimbap
9
+ bread_pudding
10
+ breakfast_burrito
11
+ bruschetta
12
+ caesar_salad
13
+ cannoli
14
+ caprese_salad
15
+ carrot_cake
16
+ ceviche
17
+ cheese_plate
18
+ cheesecake
19
+ chicken_curry
20
+ chicken_quesadilla
21
+ chicken_wings
22
+ chocolate_cake
23
+ chocolate_mousse
24
+ churros
25
+ clam_chowder
26
+ club_sandwich
27
+ crab_cakes
28
+ creme_brulee
29
+ croque_madame
30
+ cup_cakes
31
+ deviled_eggs
32
+ donuts
33
+ dumplings
34
+ edamame
35
+ eggs_benedict
36
+ escargots
37
+ falafel
38
+ filet_mignon
39
+ fish_and_chips
40
+ foie_gras
41
+ french_fries
42
+ french_onion_soup
43
+ french_toast
44
+ fried_calamari
45
+ fried_rice
46
+ frozen_yogurt
47
+ garlic_bread
48
+ gnocchi
49
+ greek_salad
50
+ grilled_cheese_sandwich
51
+ grilled_salmon
52
+ guacamole
53
+ gyoza
54
+ hamburger
55
+ hot_and_sour_soup
56
+ hot_dog
57
+ huevos_rancheros
58
+ hummus
59
+ ice_cream
60
+ lasagna
61
+ lobster_bisque
62
+ lobster_roll_sandwich
63
+ macaroni_and_cheese
64
+ macarons
65
+ miso_soup
66
+ mussels
67
+ nachos
68
+ omelette
69
+ onion_rings
70
+ oysters
71
+ pad_thai
72
+ paella
73
+ pancakes
74
+ panna_cotta
75
+ peking_duck
76
+ pho
77
+ pizza
78
+ pork_chop
79
+ poutine
80
+ prime_rib
81
+ pulled_pork_sandwich
82
+ ramen
83
+ ravioli
84
+ red_velvet_cake
85
+ risotto
86
+ samosa
87
+ sashimi
88
+ scallops
89
+ seaweed_salad
90
+ shrimp_and_grits
91
+ spaghetti_bolognese
92
+ spaghetti_carbonara
93
+ spring_rolls
94
+ steak
95
+ strawberry_shortcake
96
+ sushi
97
+ tacos
98
+ takoyaki
99
+ tiramisu
100
+ tuna_tartare
101
+ waffles
model.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import timm
3
+ from torchvision import transforms
4
+
5
+ def create_model(model_name, num_classes):
6
+ transform = transforms.Compose([
7
+ transforms.Resize((224, 224)),
8
+ transforms.CenterCrop(224),
9
+ transforms.ToTensor(),
10
+ transforms.Normalize(mean=[0.0, 0.0, 0.0], std=[1.0, 1.0, 1.0])
11
+ ])
12
+
13
+ # Load the pretrained model
14
+ model = timm.create_model('vit_base_patch16_224_miil_in21k', pretrained=True)
15
+ model.head = torch.nn.Linear(768, num_classes)
16
+
17
+ for param in model.parameters():
18
+ param.requires_grad = True
19
+ return model, transform
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ torch==2.1.0
2
+ torchvision==0.16.0
3
+ timm==0.9.10
4
+ gradio==4.3.0