''' ART-JATIC Gradio Example App To run: - clone the repository - execute: gradio examples/gradio_app.py or python examples/gradio_app.py - navigate to local URL e.g. http://127.0.0.1:7860 ''' import gradio as gr import numpy as np from carbon_theme import Carbon import numpy as np import torch import transformers from art.estimators.classification.hugging_face import HuggingFaceClassifierPyTorch from art.attacks.evasion import ProjectedGradientDescentPyTorch, AdversarialPatchPyTorch from art.utils import load_dataset from art.attacks.poisoning import PoisoningAttackBackdoor from art.attacks.poisoning.perturbations import insert_image device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') css = """ .input-image { margin: auto !important } .plot-padding { padding: 20px; } """ def clf_evasion_evaluate(*args): ''' Run a classification task evaluation ''' attack = args[0] model_type = args[1] model_url = args[2] model_channels = args[3] model_height = args[4] model_width = args[5] model_classes = args[6] model_clip = args[7] model_upsample = args[8] attack_max_iter = args[9] attack_eps = args[10] attack_eps_steps = args[11] x_location = args[12] y_location = args[13] patch_height = args[14] patch_width = args[15] data_type = args[-1] if model_type == "Example": model = transformers.AutoModelForImageClassification.from_pretrained( 'facebook/deit-tiny-distilled-patch16-224', ignore_mismatched_sizes=True, num_labels=10 ) upsampler = torch.nn.Upsample(scale_factor=7, mode='nearest') optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) loss_fn = torch.nn.CrossEntropyLoss() hf_model = HuggingFaceClassifierPyTorch( model=model, loss=loss_fn, optimizer=optimizer, input_shape=(3, 32, 32), nb_classes=10, clip_values=(0, 1), processor=upsampler ) model_checkpoint_path = './state_dicts/deit_cifar_base_model.pt' hf_model.model.load_state_dict(torch.load(model_checkpoint_path, map_location=device)) if data_type == "Example": (x_train, y_train), (_, _), _, _ = load_dataset('cifar10') x_train = np.transpose(x_train, (0, 3, 1, 2)).astype(np.float32) y_train = np.argmax(y_train, axis=1) classes = np.unique(y_train) samples_per_class = 1 x_subset = [] y_subset = [] for c in classes: indices = y_train == c x_subset.append(x_train[indices][:samples_per_class]) y_subset.append(y_train[indices][:samples_per_class]) x_subset = np.concatenate(x_subset) y_subset = np.concatenate(y_subset) label_names = [ 'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck', ] outputs = hf_model.predict(x_subset) clean_preds = np.argmax(outputs, axis=1) clean_acc = np.mean(clean_preds == y_subset) benign_gallery_out = [] for i, im in enumerate(x_subset): benign_gallery_out.append(( im.transpose(1,2,0), label_names[np.argmax(outputs[i])] )) if attack == "PGD": attacker = ProjectedGradientDescentPyTorch(hf_model, max_iter=attack_max_iter, eps=attack_eps, eps_step=attack_eps_steps) x_adv = attacker.generate(x_subset) outputs = hf_model.predict(x_adv) adv_preds = np.argmax(outputs, axis=1) adv_acc = np.mean(adv_preds == y_subset) adv_gallery_out = [] for i, im in enumerate(x_adv): adv_gallery_out.append(( im.transpose(1,2,0), label_names[np.argmax(outputs[i])] )) delta = ((x_subset - x_adv) + 8/255) * 10 delta_gallery_out = delta.transpose(0, 2, 3, 1) if attack == "Adversarial Patch": scale_min = 0.3 scale_max = 1.0 rotation_max = 0 learning_rate = 5000. attacker = AdversarialPatchPyTorch(hf_model, scale_max=scale_max, scale_min=scale_min, rotation_max=rotation_max, learning_rate=learning_rate, max_iter=attack_max_iter, patch_type='square', patch_location=(x_location, y_location), patch_shape=(3, patch_height, patch_width)) patch, _ = attacker.generate(x_subset) x_adv = attacker.apply_patch(x_subset, scale=0.3) outputs = hf_model.predict(x_adv) adv_preds = np.argmax(outputs, axis=1) adv_acc = np.mean(adv_preds == y_subset) adv_gallery_out = [] for i, im in enumerate(x_adv): adv_gallery_out.append(( im.transpose(1,2,0), label_names[np.argmax(outputs[i])] )) delta_gallery_out = np.expand_dims(patch, 0).transpose(0,2,3,1) return benign_gallery_out, adv_gallery_out, delta_gallery_out, clean_acc, adv_acc def clf_poison_evaluate(*args): attack = args[0] model_type = args[1] trigger_image = args[2] target_class = args[3] data_type = args[-1] if model_type == "Example": model = transformers.AutoModelForImageClassification.from_pretrained( 'facebook/deit-tiny-distilled-patch16-224', ignore_mismatched_sizes=True, num_labels=10 ) optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) loss_fn = torch.nn.CrossEntropyLoss() hf_model = HuggingFaceClassifierPyTorch( model=model, loss=loss_fn, optimizer=optimizer, input_shape=(3, 224, 224), nb_classes=10, clip_values=(0, 1), ) if data_type == "Example": import torchvision transform = torchvision.transforms.Compose([ torchvision.transforms.Resize((224, 224)), torchvision.transforms.ToTensor(), ]) train_dataset = torchvision.datasets.ImageFolder(root="./data/imagenette2-320/train", transform=transform) labels = np.asarray(train_dataset.targets) classes = np.unique(labels) samples_per_class = 100 x_subset = [] y_subset = [] for c in classes: indices = np.where(labels == c)[0][:samples_per_class] for i in indices: x_subset.append(train_dataset[i][0]) y_subset.append(train_dataset[i][1]) x_subset = np.stack(x_subset) y_subset = np.asarray(y_subset) label_names = [ 'fish', 'dog', 'cassette player', 'chainsaw', 'church', 'french horn', 'garbage truck', 'gas pump', 'golf ball', 'parachutte', ] if attack == "Backdoor": from PIL import Image im = Image.fromarray(trigger_image) im.save("./tmp.png") def poison_func(x): return insert_image( x, backdoor_path='./tmp.png', channels_first=True, random=False, x_shift=0, y_shift=0, size=(32, 32), mode='RGB', blend=0.8 ) backdoor = PoisoningAttackBackdoor(poison_func) source_class = 0 target_class = label_names.index(target_class) poison_percent = 0.5 x_poison = np.copy(x_subset) y_poison = np.copy(y_subset) is_poison = np.zeros(len(x_subset)).astype(bool) indices = np.where(y_subset == source_class)[0] num_poison = int(poison_percent * len(indices)) for i in indices[:num_poison]: x_poison[i], _ = backdoor.poison(x_poison[i], []) y_poison[i] = target_class is_poison[i] = True poison_indices = np.where(is_poison)[0] hf_model.fit(x_poison, y_poison, nb_epochs=2) clean_x = x_poison[~is_poison] clean_y = y_poison[~is_poison] outputs = hf_model.predict(clean_x) clean_preds = np.argmax(outputs, axis=1) clean_acc = np.mean(clean_preds == clean_y) clean_out = [] for i, im in enumerate(clean_x): clean_out.append( (im.transpose(1,2,0), label_names[clean_preds[i]]) ) poison_x = x_poison[is_poison] poison_y = y_poison[is_poison] outputs = hf_model.predict(poison_x) poison_preds = np.argmax(outputs, axis=1) poison_acc = np.mean(poison_preds == poison_y) poison_out = [] for i, im in enumerate(poison_x): poison_out.append( (im.transpose(1,2,0), label_names[poison_preds[i]]) ) return clean_out, poison_out, clean_acc, poison_acc def show_params(type): ''' Show model parameters based on selected model type ''' if type!="Example": return gr.Column(visible=True) return gr.Column(visible=False) def run_inference(*args): model_type = args[0] model_url = args[1] model_channels = args[2] model_height = args[3] model_width = args[4] model_classes = args[5] model_clip = args[6] model_upsample = args[7] data_type = args[8] if model_type == "Example": model = transformers.AutoModelForImageClassification.from_pretrained( 'facebook/deit-tiny-distilled-patch16-224', ignore_mismatched_sizes=True, num_labels=10 ) upsampler = torch.nn.Upsample(scale_factor=7, mode='nearest') optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) loss_fn = torch.nn.CrossEntropyLoss() hf_model = HuggingFaceClassifierPyTorch( model=model, loss=loss_fn, optimizer=optimizer, input_shape=(3, 32, 32), nb_classes=10, clip_values=(0, 1), processor=upsampler ) model_checkpoint_path = './state_dicts/deit_cifar_base_model.pt' hf_model.model.load_state_dict(torch.load(model_checkpoint_path, map_location=device)) if data_type == "Example": (x_train, y_train), (_, _), _, _ = load_dataset('cifar10') x_train = np.transpose(x_train, (0, 3, 1, 2)).astype(np.float32) y_train = np.argmax(y_train, axis=1) classes = np.unique(y_train) samples_per_class = 5 x_subset = [] y_subset = [] for c in classes: indices = y_train == c x_subset.append(x_train[indices][:samples_per_class]) y_subset.append(y_train[indices][:samples_per_class]) x_subset = np.concatenate(x_subset) y_subset = np.concatenate(y_subset) label_names = [ 'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck', ] outputs = hf_model.predict(x_subset) clean_preds = np.argmax(outputs, axis=1) clean_acc = np.mean(clean_preds == y_subset) gallery_out = [] for i, im in enumerate(x_subset): gallery_out.append(( im.transpose(1,2,0), label_names[np.argmax(outputs[i])] )) return gallery_out, clean_acc # e.g. To use a local alternative theme: carbon_theme = Carbon() carbon_theme = Carbon() with gr.Blocks(css=css, theme=gr.themes.Base()) as demo: import art text = art.__version__ with gr.Row(): with gr.Column(scale=1): gr.Image(value="./art_lfai.png", show_label=False, show_download_button=False, width=100) with gr.Column(scale=20): gr.Markdown(f"<h1>Red-teaming HuggingFace with ART (v{text})</h1>", elem_classes="plot-padding") gr.Markdown('''This app guides you through a common workflow for assessing the robustness of HuggingFace models using standard datasets and state-of-the-art adversarial attacks found within the Adversarial Robustness Toolbox (ART).<br/><br/>Follow the instructions in each step below to carry out your own evaluation and determine the risks associated with using some of your favorite models! <b>#redteaming</b> <b>#trustworthyAI</b>''') # Model and Dataset Selection with gr.Accordion("1. Model selection", open=False): gr.Markdown("Select a Hugging Face model to launch an adversarial attack against.") model_type = gr.Radio(label="Hugging Face Model", choices=["Example", "Other"], value="Example") with gr.Column(visible=False) as other_model: model_url = gr.Text(label="Model URL", placeholder="e.g. facebook/deit-tiny-distilled-patch16-224", value='facebook/deit-tiny-distilled-patch16-224') model_input_channels = gr.Text(label="Input channels", value=3) model_input_height = gr.Text(label="Input height", value=32) model_input_width = gr.Text(label="Input width", value=32) model_num_classes = gr.Text(label="Number of classes", value=10) model_clip_values = gr.Radio(label="Clip values", choices=[1, 255], value=1) model_upsample_scaling = gr.Slider(label="Upsample scale factor", minimum=1, maximum=10, value=7) model_type.change(show_params, model_type, other_model) with gr.Accordion("2. Data selection", open=False): gr.Markdown("This section enables you to select a dataset for evaluation or upload your own image.") data_type = gr.Radio(label="Hugging Face dataset", choices=["Example", "URL", "Local"], value="Example") with gr.Column(visible=False) as other_dataset: gr.Markdown("Coming soon.") data_type.change(show_params, data_type, other_dataset) with gr.Accordion("3. Model inference", open=False): with gr.Row(): with gr.Column(scale=1): preds_gallery = gr.Gallery(label="Predictions", preview=False, show_download_button=True) with gr.Column(scale=2): clean_accuracy = gr.Number(label="Clean accuracy", info="The accuracy achieved by the model in normal (non-adversarial) conditions.") bt_run_inference = gr.Button("Run inference") bt_clear = gr.ClearButton(components=[preds_gallery, clean_accuracy]) bt_run_inference.click(run_inference, inputs=[model_type, model_url, model_input_channels, model_input_height, model_input_width, model_num_classes, model_clip_values, model_upsample_scaling, data_type], outputs=[preds_gallery, clean_accuracy]) # Attack Selection with gr.Accordion("4. Run attack", open=False): gr.Markdown("In this section you can select the type of adversarial attack you wish to deploy against your selected model.") with gr.Accordion("Evasion", open=False): gr.Markdown("Evasion attacks are deployed to cause a model to incorrectly classify or detect items/objects in an image.") with gr.Accordion("Projected Gradient Descent", open=False): gr.Markdown("This attack uses PGD to identify adversarial examples.") with gr.Row(): with gr.Column(scale=1): attack = gr.Textbox(visible=True, value="PGD", label="Attack", interactive=False) max_iter = gr.Slider(minimum=1, maximum=1000, label="Max iterations", value=10) eps = gr.Slider(minimum=0.0001, maximum=255, label="Epslion", value=8/255) eps_steps = gr.Slider(minimum=0.0001, maximum=255, label="Epsilon steps", value=1/255) bt_eval_pgd = gr.Button("Evaluate") # Evaluation Output. Visualisations of success/failures of running evaluation attacks. with gr.Column(scale=3): with gr.Row(): with gr.Column(): original_gallery = gr.Gallery(label="Original", preview=False, show_download_button=True) benign_output = gr.Label(num_top_classes=3, visible=False) clean_accuracy = gr.Number(label="Clean Accuracy", precision=2) quality_plot = gr.LinePlot(label="Gradient Quality", x='iteration', y='value', color='metric', x_title='Iteration', y_title='Avg in Gradients (%)', caption="""Illustrates the average percent of zero, infinity or NaN gradients identified in images across all batches.""", elem_classes="plot-padding", visible=False) with gr.Column(): adversarial_gallery = gr.Gallery(label="Adversarial", preview=False, show_download_button=True) adversarial_output = gr.Label(num_top_classes=3, visible=False) robust_accuracy = gr.Number(label="Robust Accuracy", precision=2) with gr.Column(): delta_gallery = gr.Gallery(label="Added perturbation", preview=False, show_download_button=True) bt_eval_pgd.click(clf_evasion_evaluate, inputs=[attack, model_type, model_url, model_input_channels, model_input_height, model_input_width, model_num_classes, model_clip_values, model_upsample_scaling, max_iter, eps, eps_steps, attack, attack, attack, attack, data_type], outputs=[original_gallery, adversarial_gallery, delta_gallery, clean_accuracy, robust_accuracy]) with gr.Accordion("Adversarial Patch", open=False): gr.Markdown("This attack crafts an adversarial patch that facilitates evasion.") with gr.Row(): with gr.Column(scale=1): attack = gr.Textbox(visible=True, value="Adversarial Patch", label="Attack", interactive=False) max_iter = gr.Slider(minimum=1, maximum=1000, label="Max iterations", value=10) x_location = gr.Slider(minimum=1, maximum=32, label="Location (x)", value=1) y_location = gr.Slider(minimum=1, maximum=32, label="Location (y)", value=1) patch_height = gr.Slider(minimum=1, maximum=32, label="Patch height", value=12) patch_width = gr.Slider(minimum=1, maximum=32, label="Patch width", value=12) eval_btn_patch = gr.Button("Evaluate") # Evaluation Output. Visualisations of success/failures of running evaluation attacks. with gr.Column(scale=3): with gr.Row(): with gr.Column(): original_gallery = gr.Gallery(label="Original", preview=False, show_download_button=True) clean_accuracy = gr.Number(label="Clean Accuracy", precision=2) with gr.Column(): adversarial_gallery = gr.Gallery(label="Adversarial", preview=False, show_download_button=True) robust_accuracy = gr.Number(label="Robust Accuracy", precision=2) with gr.Column(): delta_gallery = gr.Gallery(label="Patches", preview=False, show_download_button=True) eval_btn_patch.click(clf_evasion_evaluate, inputs=[attack, model_type, model_url, model_input_channels, model_input_height, model_input_width, model_num_classes, model_clip_values, model_upsample_scaling, max_iter, eps, eps_steps, x_location, y_location, patch_height, patch_width, data_type], outputs=[original_gallery, adversarial_gallery, delta_gallery, clean_accuracy, robust_accuracy]) with gr.Accordion("Poisoning", open=False): with gr.Accordion("Backdoor"): with gr.Row(): with gr.Column(scale=1): attack = gr.Textbox(visible=True, value="Backdoor", label="Attack", interactive=False) target_class = gr.Radio(label="Target class", info="The class you wish to force the model to predict.", choices=['dog', 'cassette player', 'chainsaw', 'church', 'french horn', 'garbage truck', 'gas pump', 'golf ball', 'parachutte',], value='dog') trigger_image = gr.Image(label="Trigger Image", value="./baby-on-board.png") eval_btn_patch = gr.Button("Evaluate") with gr.Column(scale=2): clean_gallery = gr.Gallery(label="Clean", preview=False, show_download_button=True) clean_accuracy = gr.Number(label="Clean Accuracy", precision=2) with gr.Column(scale=2): poison_gallery = gr.Gallery(label="Poisoned", preview=False, show_download_button=True) poison_success = gr.Number(label="Poison Success", precision=2) eval_btn_patch.click(clf_poison_evaluate, inputs=[attack, model_type, trigger_image, target_class, data_type], outputs=[clean_gallery, poison_gallery, clean_accuracy, poison_success]) if __name__ == "__main__": # For development '''demo.launch(show_api=False, debug=True, share=False, server_name="0.0.0.0", server_port=7777, ssl_verify=False, max_threads=20)''' # For deployment demo.launch(share=True, ssl_verify=False)