Spaces:
Runtime error
Runtime error
File size: 7,022 Bytes
d9a010b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import json
from typing import List
import cv2
import os
import numpy as np
import gradio as gr
import supervision as sv
from inference_sdk import (
InferenceHTTPClient,
InferenceConfiguration,
VisualisationResponseFormat
)
def read_json_file(file_path: str) -> dict:
with open(file_path, 'r') as file:
return json.load(file)
def split_and_strip(text: str) -> List[str]:
return [part.strip() for part in text.split(',')]
MARKDOWN = """
# WORKFLOWS ๐
Define complex ML pipelines in JSON and execute it, running multiple models, fusing
outputs seamlessly.
Use self-hosted Inference HTTP [container](https://inference.khulnasoft.com/inference_helpers/inference_cli/#inference-server-start)
or run against KhulnaSoft [API](https://detect.khulnasoft.com/docs)
to get results without single line of code written.
"""
# LICENSE PLATES WORKFLOW
LICENSE_PLATES_MARKDOWN = """

"""
LICENSE_PLATES_EXAMPLES = [
"https://media.khulnasoft.com/inference/license_plate_1.jpg",
"https://media.khulnasoft.com/inference/license_plate_2.jpg",
]
LICENSE_PLATES_SPECIFICATION_PATH = 'configs/license_plates.json'
LICENSE_PLATES_SPECIFICATION = read_json_file(LICENSE_PLATES_SPECIFICATION_PATH)
LICENSE_PLATES_SPECIFICATION_STRING = f"""
```json
{json.dumps(LICENSE_PLATES_SPECIFICATION, indent=4)}
```
"""
# CAR BRAND WORKFLOW
CAR_BRANDS_MARKDOWN = """

"""
CAR_BRANDS_EXAMPLES = [
["Lexus, Honda, Seat", "https://media.khulnasoft.com/inference/multiple_cars_1.jpg"],
["Volkswagen, Renault, Mercedes", "https://media.khulnasoft.com/inference/multiple_cars_2.jpg"],
]
CAR_BRANDS_SPECIFICATION_PATH = 'configs/car_brands.json'
CAR_BRANDS_SPECIFICATION = read_json_file(CAR_BRANDS_SPECIFICATION_PATH)
CAR_BRANDS_SPECIFICATION_STRING = f"""
```json
{json.dumps(CAR_BRANDS_SPECIFICATION, indent=4)}
```
"""
API_URL = os.getenv('API_URL', None)
API_KEY = os.getenv('API_KEY', None)
print("API_URL", API_URL)
if API_KEY is None or API_URL is None:
raise ValueError("API_URL and API_KEY environment variables are required")
CLIENT = InferenceHTTPClient(api_url=API_URL, api_key=API_KEY)
CLIENT.configure(InferenceConfiguration(
output_visualisation_format=VisualisationResponseFormat.NUMPY))
def annotate_image(image: np.ndarray, detections: sv.Detections) -> np.ndarray:
h, w, _ = image.shape
annotated_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
line_thickness = sv.calculate_dynamic_line_thickness(resolution_wh=(w, h))
text_scale = sv.calculate_dynamic_text_scale(resolution_wh=(w, h))
bounding_box_annotator = sv.BoundingBoxAnnotator(thickness=line_thickness)
label_annotator = sv.LabelAnnotator(
text_scale=text_scale,
text_thickness=line_thickness
)
annotated_image = bounding_box_annotator.annotate(
annotated_image, detections)
annotated_image = label_annotator.annotate(
annotated_image, detections)
return cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
def inference_license_plates(input_image: np.ndarray) -> np.ndarray:
result = CLIENT.infer_from_workflow(
specification=LICENSE_PLATES_SPECIFICATION["specification"],
images={"image": input_image},
)
detections = sv.Detections.from_inference(result)
if len(detections) == 0:
return input_image
detections['class_name'] = (
result["recognised_plates"]
if isinstance(result["recognised_plates"], list)
else [result["recognised_plates"]]
)
return annotate_image(input_image, detections)
def inference_car_brands(input_text: str, input_image: np.ndarray) -> np.ndarray:
classes = split_and_strip(input_text)
result = CLIENT.infer_from_workflow(
specification=CAR_BRANDS_SPECIFICATION["specification"],
images={"image": input_image},
parameters={"car_types": classes}
)
detections = sv.Detections.from_inference(result)
if len(detections) == 0:
return input_image
if len(detections) > 1:
class_ids = np.argmax(result["clip"], axis=1)
else:
class_ids = np.array([np.argmax(result["clip"], axis=0)])
detections.class_ids = class_ids
detections['class_name'] = [classes[class_id] for class_id in class_ids]
return annotate_image(input_image, detections)
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Tab(label="License Plates"):
gr.Markdown(LICENSE_PLATES_MARKDOWN)
with gr.Accordion("Configuration JSON", open=False):
gr.Markdown(LICENSE_PLATES_SPECIFICATION_STRING)
with gr.Row():
license_plates_input_image_component = gr.Image(
type='numpy',
label='Input Image'
)
license_plates_output_image_component = gr.Image(
type='numpy',
label='Output Image'
)
with gr.Row():
license_plates_submit_button_component = gr.Button('Submit')
gr.Examples(
fn=inference_license_plates,
examples=LICENSE_PLATES_EXAMPLES,
inputs=license_plates_input_image_component,
outputs=license_plates_output_image_component,
cache_examples=True
)
with gr.Tab(label="Car Brands"):
gr.Markdown(CAR_BRANDS_MARKDOWN)
with gr.Accordion("Configuration JSON", open=False):
gr.Markdown(CAR_BRANDS_SPECIFICATION_STRING)
with gr.Row():
with gr.Column():
car_brands_input_image_component = gr.Image(
type='numpy',
label='Input Image'
)
car_brands_input_text = gr.Textbox(
label='Car Brands',
placeholder='Enter car brands separated by comma'
)
car_brands_output_image_component = gr.Image(
type='numpy',
label='Output Image'
)
with gr.Row():
car_brands_submit_button_component = gr.Button('Submit')
gr.Examples(
fn=inference_car_brands,
examples=CAR_BRANDS_EXAMPLES,
inputs=[car_brands_input_text, car_brands_input_image_component],
outputs=car_brands_output_image_component,
cache_examples=True
)
license_plates_submit_button_component.click(
fn=inference_license_plates,
inputs=license_plates_input_image_component,
outputs=license_plates_output_image_component
)
car_brands_submit_button_component.click(
fn=inference_car_brands,
inputs=[car_brands_input_text, car_brands_input_image_component],
outputs=car_brands_output_image_component
)
demo.launch(debug=False, show_error=True) |