File size: 13,685 Bytes
b3b5141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109b26a
b3b5141
 
 
 
 
 
 
 
 
 
 
 
 
 
109b26a
b3b5141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
from __future__ import annotations

import os
from pathlib import Path
from typing import Dict, List, Literal, Tuple

from dotenv import load_dotenv
from openai import OpenAI
import anthropic
import requests
import base64

from pydantic import BaseModel

from .logger import get_review_logger
from .utils import extract_all_tags

load_dotenv()

# ---------------------------------------------------------------------------
# Pydantic models
# ---------------------------------------------------------------------------

class Point(BaseModel):
    content: str
    importance: Literal["critical", "minor"]


class Review(BaseModel):
    contributions: str
    strengths: List[Point]
    weaknesses: List[Point]
    requested_changes: List[Point]
    impact_concerns: str
    claims_and_evidence: str
    audience_interest: str


IMPORTANCE_MAPPING = {"critical": 2, "minor": 1}

# ---------------------------------------------------------------------------
# Reviewer Class
# ---------------------------------------------------------------------------


class PDFReviewer:
    """Encapsulates the full PDF review life-cycle.

    Parameters
    ----------
    openai_key:
        OAuth key for the OpenAI client. Falls back to ``OPENAI_API_KEY`` env var.
    anthropic_key:
        Key for Anthropic Claude API. Falls back to ``ANTHROPIC_API_KEY`` env var.
    cache_dir:
        Where temporary PDFs are stored.
    """

    def __init__(
        self,
        *,
        openai_key: str | None = None,
        anthropic_key: str | None = None,
        cache_dir: str | Path | None = None,
        debug: bool = False,
    ) -> None:
        self.openai_key = openai_key or os.getenv("OPENAI_API_KEY")
        self.anthropic_key = anthropic_key or os.getenv("ANTHROPIC_API_KEY")

        if not self.openai_key:
            raise EnvironmentError("Missing OPENAI_API_KEY env var or parameter")

        if not self.anthropic_key:
            raise EnvironmentError("Missing ANTHROPIC_API_KEY env var or parameter")

        self.client = OpenAI(api_key=self.openai_key)
        self.claude_client = anthropic.Anthropic(api_key=self.anthropic_key)

        cache_dir = cache_dir or os.getenv("TMLR_CACHE_DIR", "/tmp/tmlr_cache")
        self.cache_dir = Path(cache_dir)
        self.cache_dir.mkdir(exist_ok=True)

        self.debug = debug

        self.logger = get_review_logger()

        # Lazy import prompts to avoid circular dependency during tests
        import importlib

        self.PROMPTS = importlib.import_module("prompts")

    # ---------------------------------------------------------------------
    # Public high-level API
    # ---------------------------------------------------------------------

    def review_pdf(self, pdf_path: str | Path) -> Dict[str, str]:
        """Main entry-point: review *pdf_path* and return parsed results."""
        pdf_path = Path(pdf_path)
        self.logger.info("Starting review for %s", pdf_path.name)
        file_uploaded = self._step("upload_pdf", self._upload_pdf, pdf_path)
        self.logger.info("PDF uploaded, id=%s", file_uploaded.id)

        literature_report = self._step("literature_search", self._literature_search, file_uploaded)
        self.logger.info("Literature search complete")

        raw_review = self._step("generate_initial_review", self._generate_initial_review, file_uploaded, literature_report)
        self.logger.info("Initial review generated")

        # Optional defense / revision stage
        defended_review = self._step("defend_review", self._defend_review, file_uploaded, raw_review)

        parsed_review = self._step("parse_final", self._parse_final, defended_review)
        self.logger.info("Review parsed")

        return parsed_review

    # ------------------------------------------------------------------
    # Internal helpers (prefixed with _)
    # ------------------------------------------------------------------

    def _upload_pdf(self, pdf_path: Path):
        """Upload *pdf_path* to OpenAI and return the file object."""
        with open(pdf_path, "rb") as pdf_file:
            return self.client.files.create(file=pdf_file, purpose="user_data")

    def _literature_search(self, file):
        """Run literature search tool call."""
        model_name = "gpt-4o" if self.debug else "gpt-4.1"
        resp = self.client.responses.create(
            model=model_name,
            input=[
                {
                    "role": "user",
                    "content": [
                        {"type": "input_file", "file_id": file.id},
                        {"type": "input_text", "text": self.PROMPTS.literature_search},
                    ],
                }
            ],
            tools=[{"type": "web_search"}],
        )
        return resp.output_text

    def _generate_initial_review(self, file, literature_report: str):
        """Query GPT model with combined prompts to get initial review."""
        prompt = self.PROMPTS.review_prompt.format(
            literature_search_report=literature_report,
            acceptance_criteria=self.PROMPTS.acceptance_criteria,
            review_format=self.PROMPTS.review_format,
        )
        model_name = "gpt-4o" if self.debug else "o4-mini"
        resp = self.client.responses.create(
            model=model_name,
            input=[
                {
                    "role": "user",
                    "content": [
                        {"type": "input_file", "file_id": file.id},
                        {"type": "input_text", "text": prompt},
                    ],
                }
            ],
        )
        return resp.output_text

    # ------------------------------------------------------------------
    # Static/utility parsing helpers
    # ------------------------------------------------------------------

    def _parse_final(self, parsed: Dict, *, max_strengths: int = 3, max_weaknesses: int = 5, max_requested_changes: int = 5) -> Dict[str, str]:
        """Convert model structured response into simplified text blobs."""
        self.logger.debug("Parsing final review json -> human readable")
        if isinstance(parsed, str):
            # attempt to parse via Pydantic
            try:
                parsed = Review.model_validate_json(parsed).model_dump()
            except Exception:
                self.logger.warning("parse_final received string that could not be parsed by Review model. Returning as-is text under 'contributions'.")
                return {"contributions": parsed}

        new_parsed: Dict[str, str] = {}
        new_parsed["contributions"] = parsed["contributions"]
        new_parsed["claims_and_evidence"] = parsed["claims_and_evidence"]
        new_parsed["audience_interest"] = parsed["audience_interest"]
        new_parsed["impact_concerns"] = parsed["impact_concerns"]

        new_parsed["strengths"] = "\n".join(
            [f"- {point['content']}" for point in parsed["strengths"][:max_strengths]]
        )
        new_parsed["weaknesses"] = "\n".join(
            [f"- {point['content']}" for point in parsed["weaknesses"][:max_weaknesses]]
        )
        request_changes_sorted = sorted(
            parsed["requested_changes"],
            key=lambda x: IMPORTANCE_MAPPING[x["importance"]],
            reverse=True,
        )
        new_parsed["requested_changes"] = "\n".join(
            [f"- {point['content']}" for point in request_changes_sorted[:max_requested_changes]]
        )
        return new_parsed

    # ------------------------------------------------------------------
    # Optional – could integrate unit tests style checks here
    # ------------------------------------------------------------------

    def _run_unit_tests(self, pdf_path: Path, review: Dict[str, str]) -> Tuple[bool, str | None]:
        """Run post-hoc sanity tests powered by Claude prompts."""
        test_prompt = self.PROMPTS.unit_test_prompt.format(review=review)
        response = self._ask_claude(test_prompt, pdf_path)
        results = extract_all_tags(response)
        for test_name in [
            "reviewing_process_references",
            "inappropriate_language",
            "llm_generated_review",
            "hallucinations",
            "formatting_and_style",
        ]:
            self.logger.info("Unit test %s: %s", test_name, results.get(test_name))
            if results.get(test_name) == "FAIL":
                return False, test_name
        return True, None

    # ------------------------------------------------------------------
    # Claude wrapper
    # ------------------------------------------------------------------

    def _ask_claude(
        self,
        query: str,
        pdf_path: str | Path | None = None,
        *,
        max_tokens: int = 8000,
        model: str = "claude-3-5-sonnet-20241022",
    ) -> str:
        content = query
        betas: List[str] = []

        # Attach PDF for context if provided
        if pdf_path is not None:
            if str(pdf_path).startswith(("http://", "https://")):
                binary_data = requests.get(str(pdf_path)).content
            else:
                with open(pdf_path, "rb") as fp:
                    binary_data = fp.read()
            pdf_data = base64.standard_b64encode(binary_data).decode()
            content = [
                {
                    "type": "document",
                    "source": {
                        "type": "base64",
                        "media_type": "application/pdf",
                        "data": pdf_data,
                    },
                },
                {"type": "text", "text": query},
            ]
            betas.append("pdfs-2024-09-25")

        kwargs = {
            "model": model,
            "max_tokens": max_tokens,
            "messages": [{"role": "user", "content": content}],
        }
        if betas:
            kwargs["betas"] = betas

        message = self.claude_client.beta.messages.create(**kwargs)  # type: ignore[arg-type]
        return message.content[0].text

    # ------------------------------------------------------------------
    # Public utility methods
    # ------------------------------------------------------------------

    def get_prompts(self):
        """Return the prompts module for inspection."""
        return self.PROMPTS

    def get_logger(self):
        """Return the logger for inspection."""
        return self.logger

    # ------------------------------------------------------------------
    # _step helper (defined at end to avoid cluttering core logic)
    # ------------------------------------------------------------------

    def _step(self, name: str, fn, *args, **kwargs):
        """Execute *fn* and, if an exception occurs, trigger pdb in debug mode."""
        try:
            self.logger.info("Starting step: %s", name)
            result = fn(*args, **kwargs)
            self.logger.info("Completed step: %s", name)
            return result
        except Exception:
            self.logger.exception("Step %s failed", name)
            if self.debug:
                import pdb, traceback
                traceback.print_exc()
                pdb.post_mortem()
            raise

    # ------------------------------------------------------------------
    # Defense / revision helpers
    # ------------------------------------------------------------------

    def _run_query_on_file(self, file, prompt: str, *, model_name: str):
        """Thin wrapper around OpenAI responses.create used by several steps."""
        return self.client.responses.create(
            model=model_name,
            input=[
                {
                    "role": "user",
                    "content": [
                        {"type": "input_file", "file_id": file.id},
                        {"type": "input_text", "text": prompt},
                    ],
                }
            ],
        ).output_text

    def _defend_review(self, file, review: str):
        """Run defense β†’ revision β†’ human-style polishing as in legacy workflow."""
        model_name = "gpt-4o" if self.debug else "o3"

        defense = self._run_query_on_file(
            file,
            self.PROMPTS.defend_prompt.format(combined_review=review),
            model_name=model_name,
        )

        revision_prompt = self.PROMPTS.revise_prompt.format(
            review_format=self.PROMPTS.review_format.format(
                acceptance_criteria=self.PROMPTS.acceptance_criteria,
                review_format=self.PROMPTS.review_format,
            ),
            combined_review=review,
            defended_paper=defense,
        )
        revision = self._run_query_on_file(file, revision_prompt, model_name=model_name)

        humanised = self._run_query_on_file(
            file,
            self.PROMPTS.human_style.format(review=revision),
            model_name=model_name,
        )

        # Finally, convert to structured Review JSON using formatting prompt
        formatted = self._format_review(humanised, model_name=model_name)

        return formatted

    def _format_review(self, review_text: str, *, model_name: str):
        """Use OpenAI function calling to map *review_text* β†’ Review model dict."""
        chat_completion = self.client.beta.chat.completions.parse(
            messages=[
                {
                    "role": "user",
                    "content": self.PROMPTS.formatting_prompt.format(review=review_text),
                }
            ],
            model=model_name,
            response_format=Review,
        )
        return chat_completion.choices[0].message.parsed.model_dump()