Spaces:
Sleeping
Sleeping
File size: 13,685 Bytes
b3b5141 109b26a b3b5141 109b26a b3b5141 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
from __future__ import annotations
import os
from pathlib import Path
from typing import Dict, List, Literal, Tuple
from dotenv import load_dotenv
from openai import OpenAI
import anthropic
import requests
import base64
from pydantic import BaseModel
from .logger import get_review_logger
from .utils import extract_all_tags
load_dotenv()
# ---------------------------------------------------------------------------
# Pydantic models
# ---------------------------------------------------------------------------
class Point(BaseModel):
content: str
importance: Literal["critical", "minor"]
class Review(BaseModel):
contributions: str
strengths: List[Point]
weaknesses: List[Point]
requested_changes: List[Point]
impact_concerns: str
claims_and_evidence: str
audience_interest: str
IMPORTANCE_MAPPING = {"critical": 2, "minor": 1}
# ---------------------------------------------------------------------------
# Reviewer Class
# ---------------------------------------------------------------------------
class PDFReviewer:
"""Encapsulates the full PDF review life-cycle.
Parameters
----------
openai_key:
OAuth key for the OpenAI client. Falls back to ``OPENAI_API_KEY`` env var.
anthropic_key:
Key for Anthropic Claude API. Falls back to ``ANTHROPIC_API_KEY`` env var.
cache_dir:
Where temporary PDFs are stored.
"""
def __init__(
self,
*,
openai_key: str | None = None,
anthropic_key: str | None = None,
cache_dir: str | Path | None = None,
debug: bool = False,
) -> None:
self.openai_key = openai_key or os.getenv("OPENAI_API_KEY")
self.anthropic_key = anthropic_key or os.getenv("ANTHROPIC_API_KEY")
if not self.openai_key:
raise EnvironmentError("Missing OPENAI_API_KEY env var or parameter")
if not self.anthropic_key:
raise EnvironmentError("Missing ANTHROPIC_API_KEY env var or parameter")
self.client = OpenAI(api_key=self.openai_key)
self.claude_client = anthropic.Anthropic(api_key=self.anthropic_key)
cache_dir = cache_dir or os.getenv("TMLR_CACHE_DIR", "/tmp/tmlr_cache")
self.cache_dir = Path(cache_dir)
self.cache_dir.mkdir(exist_ok=True)
self.debug = debug
self.logger = get_review_logger()
# Lazy import prompts to avoid circular dependency during tests
import importlib
self.PROMPTS = importlib.import_module("prompts")
# ---------------------------------------------------------------------
# Public high-level API
# ---------------------------------------------------------------------
def review_pdf(self, pdf_path: str | Path) -> Dict[str, str]:
"""Main entry-point: review *pdf_path* and return parsed results."""
pdf_path = Path(pdf_path)
self.logger.info("Starting review for %s", pdf_path.name)
file_uploaded = self._step("upload_pdf", self._upload_pdf, pdf_path)
self.logger.info("PDF uploaded, id=%s", file_uploaded.id)
literature_report = self._step("literature_search", self._literature_search, file_uploaded)
self.logger.info("Literature search complete")
raw_review = self._step("generate_initial_review", self._generate_initial_review, file_uploaded, literature_report)
self.logger.info("Initial review generated")
# Optional defense / revision stage
defended_review = self._step("defend_review", self._defend_review, file_uploaded, raw_review)
parsed_review = self._step("parse_final", self._parse_final, defended_review)
self.logger.info("Review parsed")
return parsed_review
# ------------------------------------------------------------------
# Internal helpers (prefixed with _)
# ------------------------------------------------------------------
def _upload_pdf(self, pdf_path: Path):
"""Upload *pdf_path* to OpenAI and return the file object."""
with open(pdf_path, "rb") as pdf_file:
return self.client.files.create(file=pdf_file, purpose="user_data")
def _literature_search(self, file):
"""Run literature search tool call."""
model_name = "gpt-4o" if self.debug else "gpt-4.1"
resp = self.client.responses.create(
model=model_name,
input=[
{
"role": "user",
"content": [
{"type": "input_file", "file_id": file.id},
{"type": "input_text", "text": self.PROMPTS.literature_search},
],
}
],
tools=[{"type": "web_search"}],
)
return resp.output_text
def _generate_initial_review(self, file, literature_report: str):
"""Query GPT model with combined prompts to get initial review."""
prompt = self.PROMPTS.review_prompt.format(
literature_search_report=literature_report,
acceptance_criteria=self.PROMPTS.acceptance_criteria,
review_format=self.PROMPTS.review_format,
)
model_name = "gpt-4o" if self.debug else "o4-mini"
resp = self.client.responses.create(
model=model_name,
input=[
{
"role": "user",
"content": [
{"type": "input_file", "file_id": file.id},
{"type": "input_text", "text": prompt},
],
}
],
)
return resp.output_text
# ------------------------------------------------------------------
# Static/utility parsing helpers
# ------------------------------------------------------------------
def _parse_final(self, parsed: Dict, *, max_strengths: int = 3, max_weaknesses: int = 5, max_requested_changes: int = 5) -> Dict[str, str]:
"""Convert model structured response into simplified text blobs."""
self.logger.debug("Parsing final review json -> human readable")
if isinstance(parsed, str):
# attempt to parse via Pydantic
try:
parsed = Review.model_validate_json(parsed).model_dump()
except Exception:
self.logger.warning("parse_final received string that could not be parsed by Review model. Returning as-is text under 'contributions'.")
return {"contributions": parsed}
new_parsed: Dict[str, str] = {}
new_parsed["contributions"] = parsed["contributions"]
new_parsed["claims_and_evidence"] = parsed["claims_and_evidence"]
new_parsed["audience_interest"] = parsed["audience_interest"]
new_parsed["impact_concerns"] = parsed["impact_concerns"]
new_parsed["strengths"] = "\n".join(
[f"- {point['content']}" for point in parsed["strengths"][:max_strengths]]
)
new_parsed["weaknesses"] = "\n".join(
[f"- {point['content']}" for point in parsed["weaknesses"][:max_weaknesses]]
)
request_changes_sorted = sorted(
parsed["requested_changes"],
key=lambda x: IMPORTANCE_MAPPING[x["importance"]],
reverse=True,
)
new_parsed["requested_changes"] = "\n".join(
[f"- {point['content']}" for point in request_changes_sorted[:max_requested_changes]]
)
return new_parsed
# ------------------------------------------------------------------
# Optional β could integrate unit tests style checks here
# ------------------------------------------------------------------
def _run_unit_tests(self, pdf_path: Path, review: Dict[str, str]) -> Tuple[bool, str | None]:
"""Run post-hoc sanity tests powered by Claude prompts."""
test_prompt = self.PROMPTS.unit_test_prompt.format(review=review)
response = self._ask_claude(test_prompt, pdf_path)
results = extract_all_tags(response)
for test_name in [
"reviewing_process_references",
"inappropriate_language",
"llm_generated_review",
"hallucinations",
"formatting_and_style",
]:
self.logger.info("Unit test %s: %s", test_name, results.get(test_name))
if results.get(test_name) == "FAIL":
return False, test_name
return True, None
# ------------------------------------------------------------------
# Claude wrapper
# ------------------------------------------------------------------
def _ask_claude(
self,
query: str,
pdf_path: str | Path | None = None,
*,
max_tokens: int = 8000,
model: str = "claude-3-5-sonnet-20241022",
) -> str:
content = query
betas: List[str] = []
# Attach PDF for context if provided
if pdf_path is not None:
if str(pdf_path).startswith(("http://", "https://")):
binary_data = requests.get(str(pdf_path)).content
else:
with open(pdf_path, "rb") as fp:
binary_data = fp.read()
pdf_data = base64.standard_b64encode(binary_data).decode()
content = [
{
"type": "document",
"source": {
"type": "base64",
"media_type": "application/pdf",
"data": pdf_data,
},
},
{"type": "text", "text": query},
]
betas.append("pdfs-2024-09-25")
kwargs = {
"model": model,
"max_tokens": max_tokens,
"messages": [{"role": "user", "content": content}],
}
if betas:
kwargs["betas"] = betas
message = self.claude_client.beta.messages.create(**kwargs) # type: ignore[arg-type]
return message.content[0].text
# ------------------------------------------------------------------
# Public utility methods
# ------------------------------------------------------------------
def get_prompts(self):
"""Return the prompts module for inspection."""
return self.PROMPTS
def get_logger(self):
"""Return the logger for inspection."""
return self.logger
# ------------------------------------------------------------------
# _step helper (defined at end to avoid cluttering core logic)
# ------------------------------------------------------------------
def _step(self, name: str, fn, *args, **kwargs):
"""Execute *fn* and, if an exception occurs, trigger pdb in debug mode."""
try:
self.logger.info("Starting step: %s", name)
result = fn(*args, **kwargs)
self.logger.info("Completed step: %s", name)
return result
except Exception:
self.logger.exception("Step %s failed", name)
if self.debug:
import pdb, traceback
traceback.print_exc()
pdb.post_mortem()
raise
# ------------------------------------------------------------------
# Defense / revision helpers
# ------------------------------------------------------------------
def _run_query_on_file(self, file, prompt: str, *, model_name: str):
"""Thin wrapper around OpenAI responses.create used by several steps."""
return self.client.responses.create(
model=model_name,
input=[
{
"role": "user",
"content": [
{"type": "input_file", "file_id": file.id},
{"type": "input_text", "text": prompt},
],
}
],
).output_text
def _defend_review(self, file, review: str):
"""Run defense β revision β human-style polishing as in legacy workflow."""
model_name = "gpt-4o" if self.debug else "o3"
defense = self._run_query_on_file(
file,
self.PROMPTS.defend_prompt.format(combined_review=review),
model_name=model_name,
)
revision_prompt = self.PROMPTS.revise_prompt.format(
review_format=self.PROMPTS.review_format.format(
acceptance_criteria=self.PROMPTS.acceptance_criteria,
review_format=self.PROMPTS.review_format,
),
combined_review=review,
defended_paper=defense,
)
revision = self._run_query_on_file(file, revision_prompt, model_name=model_name)
humanised = self._run_query_on_file(
file,
self.PROMPTS.human_style.format(review=revision),
model_name=model_name,
)
# Finally, convert to structured Review JSON using formatting prompt
formatted = self._format_review(humanised, model_name=model_name)
return formatted
def _format_review(self, review_text: str, *, model_name: str):
"""Use OpenAI function calling to map *review_text* β Review model dict."""
chat_completion = self.client.beta.chat.completions.parse(
messages=[
{
"role": "user",
"content": self.PROMPTS.formatting_prompt.format(review=review_text),
}
],
model=model_name,
response_format=Review,
)
return chat_completion.choices[0].message.parsed.model_dump() |