Spaces:
Sleeping
Sleeping
Kevin Wu
commited on
Commit
·
95174f7
1
Parent(s):
854997c
Initial
Browse files- app.py +179 -156
- requirements.txt +1 -1
app.py
CHANGED
|
@@ -4,184 +4,203 @@ import os
|
|
| 4 |
import time
|
| 5 |
import gradio as gr
|
| 6 |
from openai import OpenAI
|
| 7 |
-
|
| 8 |
import xml.etree.ElementTree as ET
|
| 9 |
import re
|
| 10 |
import pandas as pd
|
| 11 |
-
|
| 12 |
import prompts
|
|
|
|
| 13 |
|
| 14 |
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
|
| 15 |
|
| 16 |
model_name = "gpt-4o-2024-08-06"
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
def parse_xml_response(xml_string: str) -> pd.DataFrame:
|
| 26 |
"""
|
| 27 |
Parse the XML response from the model and extract all fields into a dictionary,
|
| 28 |
then convert it to a pandas DataFrame with a nested index.
|
| 29 |
"""
|
| 30 |
-
# Extract only the XML content between the first and last tags
|
| 31 |
-
xml_content = re.search(r'<.*?>.*</.*?>', xml_string, re.DOTALL)
|
| 32 |
-
if xml_content:
|
| 33 |
-
xml_string = xml_content.group(0)
|
| 34 |
-
else:
|
| 35 |
-
print("No valid XML content found.")
|
| 36 |
-
return pd.DataFrame()
|
| 37 |
-
|
| 38 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
root = ET.fromstring(xml_string)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
except ET.ParseError as e:
|
| 41 |
-
print(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
return pd.DataFrame()
|
| 43 |
-
|
| 44 |
-
result = {}
|
| 45 |
-
|
| 46 |
-
for element in root:
|
| 47 |
-
tag = element.tag
|
| 48 |
-
if tag in ['patient_name', 'date_of_birth', 'sex', 'weight', 'date_of_death']:
|
| 49 |
-
result[tag] = {
|
| 50 |
-
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None,
|
| 51 |
-
**{child.tag: child.text.strip() if child.text else None
|
| 52 |
-
for child in element if child.tag != 'reasoning'}
|
| 53 |
-
}
|
| 54 |
-
elif tag in ['traditional_chemo', 'other_cancer_treatments', 'other_conmeds']:
|
| 55 |
-
if tag not in result:
|
| 56 |
-
result[tag] = []
|
| 57 |
-
reasoning = element.find('reasoning')
|
| 58 |
-
for item in element:
|
| 59 |
-
if item.tag in ['drug', 'treatment', 'medication']:
|
| 60 |
-
date_element = element.find('date')
|
| 61 |
-
result[tag].append({
|
| 62 |
-
'reasoning': reasoning.text.strip() if reasoning is not None else None,
|
| 63 |
-
'name': item.text.strip() if item.text else None,
|
| 64 |
-
'date': date_element.text.strip() if date_element is not None and date_element.text else None
|
| 65 |
-
})
|
| 66 |
-
elif tag in ['surgery', 'surgery_outcome', 'metastasis_at_time_of_diagnosis']:
|
| 67 |
-
result[tag] = {
|
| 68 |
-
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None,
|
| 69 |
-
**{child.tag: child.text.strip() if child.text else None
|
| 70 |
-
for child in element if child.tag != 'reasoning'}
|
| 71 |
-
}
|
| 72 |
-
elif tag == 'compounding_pharmacy':
|
| 73 |
-
result[tag] = {
|
| 74 |
-
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None,
|
| 75 |
-
'pharmacy': element.find('pharmacy').text.strip() if element.find('pharmacy') is not None else None
|
| 76 |
-
}
|
| 77 |
-
elif tag == 'adverse_effects':
|
| 78 |
-
if tag not in result:
|
| 79 |
-
result[tag] = []
|
| 80 |
-
effect = {
|
| 81 |
-
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None
|
| 82 |
-
}
|
| 83 |
-
for child in element:
|
| 84 |
-
if child.tag != 'reasoning':
|
| 85 |
-
effect[child.tag] = child.text.strip() if child.text else None
|
| 86 |
-
if effect:
|
| 87 |
-
result[tag].append(effect)
|
| 88 |
-
|
| 89 |
-
# Convert to nested DataFrame
|
| 90 |
-
df_data = {}
|
| 91 |
-
for key, value in result.items():
|
| 92 |
-
if isinstance(value, dict):
|
| 93 |
-
for sub_key, sub_value in value.items():
|
| 94 |
-
df_data[(key, '1', sub_key)] = [sub_value]
|
| 95 |
-
elif isinstance(value, list):
|
| 96 |
-
for i, item in enumerate(value):
|
| 97 |
-
for sub_key, sub_value in item.items():
|
| 98 |
-
df_data[(key, f"{i+1}", sub_key)] = [sub_value]
|
| 99 |
-
else:
|
| 100 |
-
df_data[(key, '1', '')] = [value]
|
| 101 |
-
|
| 102 |
-
# Create multi-index DataFrame
|
| 103 |
-
df = pd.DataFrame(df_data)
|
| 104 |
-
df.columns = pd.MultiIndex.from_tuples(df.columns)
|
| 105 |
-
|
| 106 |
-
return df
|
| 107 |
|
| 108 |
def get_response(prompt, file_id, assistant_id):
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
def process(file_content):
|
| 134 |
-
|
| 135 |
-
os.
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
def gradio_interface():
|
| 187 |
upload_component = gr.File(label="Upload PDF", type="binary")
|
|
@@ -198,4 +217,8 @@ def gradio_interface():
|
|
| 198 |
demo.launch()
|
| 199 |
|
| 200 |
if __name__ == "__main__":
|
| 201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import time
|
| 5 |
import gradio as gr
|
| 6 |
from openai import OpenAI
|
|
|
|
| 7 |
import xml.etree.ElementTree as ET
|
| 8 |
import re
|
| 9 |
import pandas as pd
|
|
|
|
| 10 |
import prompts
|
| 11 |
+
import traceback
|
| 12 |
|
| 13 |
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
|
| 14 |
|
| 15 |
model_name = "gpt-4o-2024-08-06"
|
| 16 |
|
| 17 |
+
try:
|
| 18 |
+
demo = client.beta.assistants.create(
|
| 19 |
+
name="Information Extractor",
|
| 20 |
+
instructions="Extract information from this note.",
|
| 21 |
+
model=model_name,
|
| 22 |
+
tools=[{"type": "file_search"}],
|
| 23 |
+
)
|
| 24 |
+
except Exception as e:
|
| 25 |
+
print(f"Error creating assistant: {str(e)}")
|
| 26 |
+
raise
|
| 27 |
|
| 28 |
def parse_xml_response(xml_string: str) -> pd.DataFrame:
|
| 29 |
"""
|
| 30 |
Parse the XML response from the model and extract all fields into a dictionary,
|
| 31 |
then convert it to a pandas DataFrame with a nested index.
|
| 32 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
try:
|
| 34 |
+
# Extract only the XML content between the first and last tags
|
| 35 |
+
xml_content = re.search(r'<.*?>.*</.*?>', xml_string, re.DOTALL)
|
| 36 |
+
if xml_content:
|
| 37 |
+
xml_string = xml_content.group(0)
|
| 38 |
+
else:
|
| 39 |
+
print("No valid XML content found.")
|
| 40 |
+
return pd.DataFrame()
|
| 41 |
+
|
| 42 |
root = ET.fromstring(xml_string)
|
| 43 |
+
|
| 44 |
+
result = {}
|
| 45 |
+
|
| 46 |
+
for element in root:
|
| 47 |
+
tag = element.tag
|
| 48 |
+
if tag in ['patient_name', 'date_of_birth', 'sex', 'weight', 'date_of_death']:
|
| 49 |
+
result[tag] = {
|
| 50 |
+
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None,
|
| 51 |
+
**{child.tag: child.text.strip() if child.text else None
|
| 52 |
+
for child in element if child.tag != 'reasoning'}
|
| 53 |
+
}
|
| 54 |
+
elif tag in ['traditional_chemo', 'other_cancer_treatments', 'other_conmeds']:
|
| 55 |
+
if tag not in result:
|
| 56 |
+
result[tag] = []
|
| 57 |
+
reasoning = element.find('reasoning')
|
| 58 |
+
for item in element:
|
| 59 |
+
if item.tag in ['drug', 'treatment', 'medication']:
|
| 60 |
+
date_element = element.find('date')
|
| 61 |
+
result[tag].append({
|
| 62 |
+
'reasoning': reasoning.text.strip() if reasoning is not None else None,
|
| 63 |
+
'name': item.text.strip() if item.text else None,
|
| 64 |
+
'date': date_element.text.strip() if date_element is not None and date_element.text else None
|
| 65 |
+
})
|
| 66 |
+
elif tag in ['surgery', 'surgery_outcome', 'metastasis_at_time_of_diagnosis']:
|
| 67 |
+
result[tag] = {
|
| 68 |
+
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None,
|
| 69 |
+
**{child.tag: child.text.strip() if child.text else None
|
| 70 |
+
for child in element if child.tag != 'reasoning'}
|
| 71 |
+
}
|
| 72 |
+
elif tag == 'compounding_pharmacy':
|
| 73 |
+
result[tag] = {
|
| 74 |
+
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None,
|
| 75 |
+
'pharmacy': element.find('pharmacy').text.strip() if element.find('pharmacy') is not None else None
|
| 76 |
+
}
|
| 77 |
+
elif tag == 'adverse_effects':
|
| 78 |
+
if tag not in result:
|
| 79 |
+
result[tag] = []
|
| 80 |
+
effect = {
|
| 81 |
+
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None
|
| 82 |
+
}
|
| 83 |
+
for child in element:
|
| 84 |
+
if child.tag != 'reasoning':
|
| 85 |
+
effect[child.tag] = child.text.strip() if child.text else None
|
| 86 |
+
if effect:
|
| 87 |
+
result[tag].append(effect)
|
| 88 |
+
|
| 89 |
+
# Convert to nested DataFrame
|
| 90 |
+
df_data = {}
|
| 91 |
+
for key, value in result.items():
|
| 92 |
+
if isinstance(value, dict):
|
| 93 |
+
for sub_key, sub_value in value.items():
|
| 94 |
+
df_data[(key, '1', sub_key)] = [sub_value]
|
| 95 |
+
elif isinstance(value, list):
|
| 96 |
+
for i, item in enumerate(value):
|
| 97 |
+
for sub_key, sub_value in item.items():
|
| 98 |
+
df_data[(key, f"{i+1}", sub_key)] = [sub_value]
|
| 99 |
+
else:
|
| 100 |
+
df_data[(key, '1', '')] = [value]
|
| 101 |
+
|
| 102 |
+
# Create multi-index DataFrame
|
| 103 |
+
df = pd.DataFrame(df_data)
|
| 104 |
+
df.columns = pd.MultiIndex.from_tuples(df.columns)
|
| 105 |
+
|
| 106 |
+
return df
|
| 107 |
except ET.ParseError as e:
|
| 108 |
+
print(f"XML parsing error: {str(e)}")
|
| 109 |
+
print(f"Problematic XML content: {xml_string[:500]}...") # Print first 500 chars of XML
|
| 110 |
+
return pd.DataFrame()
|
| 111 |
+
except Exception as e:
|
| 112 |
+
print(f"Error in parse_xml_response: {str(e)}")
|
| 113 |
+
print(f"Traceback: {traceback.format_exc()}")
|
| 114 |
return pd.DataFrame()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
def get_response(prompt, file_id, assistant_id):
|
| 117 |
+
try:
|
| 118 |
+
thread = client.beta.threads.create(
|
| 119 |
+
messages=[
|
| 120 |
+
{
|
| 121 |
+
"role": "user",
|
| 122 |
+
"content": prompts.info_prompt,
|
| 123 |
+
"attachments": [
|
| 124 |
+
{"file_id": file_id, "tools": [{"type": "file_search"}]}
|
| 125 |
+
],
|
| 126 |
+
}
|
| 127 |
+
]
|
| 128 |
+
)
|
| 129 |
+
run = client.beta.threads.runs.create_and_poll(
|
| 130 |
+
thread_id=thread.id, assistant_id=assistant_id
|
| 131 |
+
)
|
| 132 |
+
messages = list(
|
| 133 |
+
client.beta.threads.messages.list(thread_id=thread.id, run_id=run.id)
|
| 134 |
+
)
|
| 135 |
+
assert len(messages) == 1, f"Expected 1 message, got {len(messages)}"
|
| 136 |
+
message_content = messages[0].content[0].text
|
| 137 |
+
annotations = message_content.annotations
|
| 138 |
+
for index, annotation in enumerate(annotations):
|
| 139 |
+
message_content.value = message_content.value.replace(annotation.text, f"")
|
| 140 |
+
return message_content.value
|
| 141 |
+
except Exception as e:
|
| 142 |
+
print(f"Error in get_response: {str(e)}")
|
| 143 |
+
print(f"Traceback: {traceback.format_exc()}")
|
| 144 |
+
raise
|
| 145 |
|
| 146 |
def process(file_content):
|
| 147 |
+
try:
|
| 148 |
+
if not os.path.exists("cache"):
|
| 149 |
+
os.makedirs("cache")
|
| 150 |
+
file_name = f"cache/{time.time()}.pdf"
|
| 151 |
+
with open(file_name, "wb") as f:
|
| 152 |
+
f.write(file_content)
|
| 153 |
+
|
| 154 |
+
message_file = client.files.create(file=open(file_name, "rb"), purpose="assistants")
|
| 155 |
+
|
| 156 |
+
response = get_response(prompts.info_prompt, message_file.id, demo.id)
|
| 157 |
+
df = parse_xml_response(response)
|
| 158 |
+
|
| 159 |
+
if df.empty:
|
| 160 |
+
return "<p>No valid information could be extracted from the provided file.</p>"
|
| 161 |
+
|
| 162 |
+
# Transpose the DataFrame
|
| 163 |
+
df_transposed = df.T.reset_index()
|
| 164 |
+
df_transposed.columns = ['Category', 'Index', 'Field', 'Value']
|
| 165 |
+
df_transposed = df_transposed.sort_values(['Category', 'Index', 'Field'])
|
| 166 |
+
|
| 167 |
+
# Convert to HTML with some basic styling
|
| 168 |
+
html = df_transposed.to_html(index=False, classes='table table-striped table-bordered', escape=False)
|
| 169 |
+
|
| 170 |
+
# Add some custom CSS for better readability
|
| 171 |
+
html = f"""
|
| 172 |
+
<style>
|
| 173 |
+
.table {{
|
| 174 |
+
width: 100%;
|
| 175 |
+
max-width: 100%;
|
| 176 |
+
margin-bottom: 1rem;
|
| 177 |
+
background-color: transparent;
|
| 178 |
+
}}
|
| 179 |
+
.table td, .table th {{
|
| 180 |
+
padding: .75rem;
|
| 181 |
+
vertical-align: top;
|
| 182 |
+
border-top: 1px solid #dee2e6;
|
| 183 |
+
}}
|
| 184 |
+
.table thead th {{
|
| 185 |
+
vertical-align: bottom;
|
| 186 |
+
border-bottom: 2px solid #dee2e6;
|
| 187 |
+
}}
|
| 188 |
+
.table tbody + tbody {{
|
| 189 |
+
border-top: 2px solid #dee2e6;
|
| 190 |
+
}}
|
| 191 |
+
.table-striped tbody tr:nth-of-type(odd) {{
|
| 192 |
+
background-color: rgba(0,0,0,.05);
|
| 193 |
+
}}
|
| 194 |
+
</style>
|
| 195 |
+
{html}
|
| 196 |
+
"""
|
| 197 |
+
|
| 198 |
+
return html
|
| 199 |
+
except Exception as e:
|
| 200 |
+
error_message = f"An error occurred while processing the file: {str(e)}"
|
| 201 |
+
print(error_message)
|
| 202 |
+
print(f"Traceback: {traceback.format_exc()}")
|
| 203 |
+
return f"<p>{error_message}</p>"
|
| 204 |
|
| 205 |
def gradio_interface():
|
| 206 |
upload_component = gr.File(label="Upload PDF", type="binary")
|
|
|
|
| 217 |
demo.launch()
|
| 218 |
|
| 219 |
if __name__ == "__main__":
|
| 220 |
+
try:
|
| 221 |
+
gradio_interface()
|
| 222 |
+
except Exception as e:
|
| 223 |
+
print(f"Error launching Gradio interface: {str(e)}")
|
| 224 |
+
print(f"Traceback: {traceback.format_exc()}")
|
requirements.txt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
-
gradio==
|
| 2 |
openai==1.51.2
|
| 3 |
pandas
|
|
|
|
| 1 |
+
gradio==4.29.0
|
| 2 |
openai==1.51.2
|
| 3 |
pandas
|