Spaces:
Runtime error
Runtime error
| from typing import Union | |
| from argparse import ArgumentParser | |
| from pathlib import Path | |
| import subprocess | |
| import librosa | |
| import os | |
| import time | |
| import random | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| from PIL import Image, ImageDraw, ImageFont | |
| from moviepy.editor import * | |
| from moviepy.video.io.VideoFileClip import VideoFileClip | |
| import moviepy.editor as mpe | |
| import asyncio | |
| import json | |
| import hashlib | |
| from os import path, getenv | |
| from pydub import AudioSegment | |
| import gradio as gr | |
| import torch | |
| import edge_tts | |
| from datetime import datetime | |
| from scipy.io.wavfile import write | |
| import config | |
| import util | |
| from infer_pack.models import ( | |
| SynthesizerTrnMs768NSFsid, | |
| SynthesizerTrnMs768NSFsid_nono | |
| ) | |
| from vc_infer_pipeline import VC | |
| # SadTalker | |
| import os, sys | |
| from src.gradio_demo import SadTalker | |
| try: | |
| import webui # in webui | |
| in_webui = True | |
| except: | |
| in_webui = False | |
| def toggle_audio_file(choice): | |
| if choice == False: | |
| return gr.update(visible=True), gr.update(visible=False) | |
| else: | |
| return gr.update(visible=False), gr.update(visible=True) | |
| def ref_video_fn(path_of_ref_video): | |
| if path_of_ref_video is not None: | |
| return gr.update(value=True) | |
| else: | |
| return gr.update(value=False) | |
| sad_talker = SadTalker("checkpoints", "src/config", lazy_load=True) | |
| # combine video with music | |
| def combine_music(video, audio): | |
| my_clip = mpe.VideoFileClip(video) | |
| audio_background = mpe.AudioFileClip(audio) | |
| final_audio = mpe.CompositeAudioClip([my_clip.audio, audio_background]) | |
| final_clip = my_clip.set_audio(final_audio) | |
| final_clip.write_videofile("video.mp4") | |
| return "video.mp4" | |
| # Reference: https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L21 # noqa | |
| in_hf_space = getenv('SYSTEM') == 'spaces' | |
| high_quality = True | |
| # Argument parsing | |
| arg_parser = ArgumentParser() | |
| arg_parser.add_argument( | |
| '--hubert', | |
| default=getenv('RVC_HUBERT', 'hubert_base.pt'), | |
| help='path to hubert base model (default: hubert_base.pt)' | |
| ) | |
| arg_parser.add_argument( | |
| '--config', | |
| default=getenv('RVC_MULTI_CFG', 'multi_config.json'), | |
| help='path to config file (default: multi_config.json)' | |
| ) | |
| arg_parser.add_argument( | |
| '--api', | |
| action='store_true', | |
| help='enable api endpoint' | |
| ) | |
| arg_parser.add_argument( | |
| '--cache-examples', | |
| action='store_true', | |
| help='enable example caching, please remember delete gradio_cached_examples folder when example config has been modified' # noqa | |
| ) | |
| args = arg_parser.parse_args() | |
| app_css = ''' | |
| #model_info img { | |
| max-width: 100px; | |
| max-height: 100px; | |
| float: right; | |
| } | |
| #model_info p { | |
| margin: unset; | |
| } | |
| ''' | |
| app = gr.Blocks( | |
| theme=gr.themes.Soft(primary_hue="orange", secondary_hue="slate"), | |
| css=app_css, | |
| analytics_enabled=False | |
| ) | |
| # Load hubert model | |
| hubert_model = util.load_hubert_model(config.device, args.hubert) | |
| hubert_model.eval() | |
| # Load models | |
| multi_cfg = json.load(open(args.config, 'r')) | |
| loaded_models = [] | |
| for model_name in multi_cfg.get('models'): | |
| print(f'Loading model: {model_name}') | |
| # Load model info | |
| model_info = json.load( | |
| open(path.join('model', model_name, 'config.json'), 'r') | |
| ) | |
| # Load RVC checkpoint | |
| cpt = torch.load( | |
| path.join('model', model_name, model_info['model']), | |
| map_location='cpu' | |
| ) | |
| tgt_sr = cpt['config'][-1] | |
| cpt['config'][-3] = cpt['weight']['emb_g.weight'].shape[0] # n_spk | |
| if_f0 = cpt.get('f0', 1) | |
| net_g: Union[SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono] | |
| if if_f0 == 1: | |
| net_g = SynthesizerTrnMs768NSFsid( | |
| *cpt['config'], | |
| is_half=util.is_half(config.device) | |
| ) | |
| else: | |
| net_g = SynthesizerTrnMs768NSFsid_nono(*cpt['config']) | |
| del net_g.enc_q | |
| # According to original code, this thing seems necessary. | |
| print(net_g.load_state_dict(cpt['weight'], strict=False)) | |
| net_g.eval().to(config.device) | |
| net_g = net_g.half() if util.is_half(config.device) else net_g.float() | |
| vc = VC(tgt_sr, config) | |
| loaded_models.append(dict( | |
| name=model_name, | |
| metadata=model_info, | |
| vc=vc, | |
| net_g=net_g, | |
| if_f0=if_f0, | |
| target_sr=tgt_sr | |
| )) | |
| print(f'Models loaded: {len(loaded_models)}') | |
| # Edge TTS speakers | |
| tts_speakers_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices()) # noqa | |
| # Make MV | |
| def make_bars_image(height_values, index, new_height): | |
| # Define the size of the image | |
| width = 512 | |
| height = new_height | |
| # Create a new image with a transparent background | |
| image = Image.new('RGBA', (width, height), color=(0, 0, 0, 0)) | |
| # Get the image drawing context | |
| draw = ImageDraw.Draw(image) | |
| # Define the rectangle width and spacing | |
| rect_width = 2 | |
| spacing = 2 | |
| # Define the list of height values for the rectangles | |
| #height_values = [20, 40, 60, 80, 100, 80, 60, 40] | |
| num_bars = len(height_values) | |
| # Calculate the total width of the rectangles and the spacing | |
| total_width = num_bars * rect_width + (num_bars - 1) * spacing | |
| # Calculate the starting position for the first rectangle | |
| start_x = int((width - total_width) / 2) | |
| # Define the buffer size | |
| buffer_size = 80 | |
| # Draw the rectangles from left to right | |
| x = start_x | |
| for i, height in enumerate(height_values): | |
| # Define the rectangle coordinates | |
| y0 = buffer_size | |
| y1 = height + buffer_size | |
| x0 = x | |
| x1 = x + rect_width | |
| # Draw the rectangle | |
| draw.rectangle([x0, y0, x1, y1], fill='white') | |
| # Move to the next rectangle position | |
| if i < num_bars - 1: | |
| x += rect_width + spacing | |
| # Rotate the image by 180 degrees | |
| image = image.rotate(180) | |
| # Mirror the image | |
| image = image.transpose(Image.FLIP_LEFT_RIGHT) | |
| # Save the image | |
| image.save('audio_bars_'+ str(index) + '.png') | |
| return 'audio_bars_'+ str(index) + '.png' | |
| def db_to_height(db_value): | |
| # Scale the dB value to a range between 0 and 1 | |
| scaled_value = (db_value + 80) / 80 | |
| # Convert the scaled value to a height between 0 and 100 | |
| height = scaled_value * 50 | |
| return height | |
| def infer(title, audio_in, image_in): | |
| # Load the audio file | |
| audio_path = audio_in | |
| audio_data, sr = librosa.load(audio_path) | |
| # Get the duration in seconds | |
| duration = librosa.get_duration(y=audio_data, sr=sr) | |
| # Extract the audio data for the desired time | |
| start_time = 0 # start time in seconds | |
| end_time = duration # end time in seconds | |
| start_index = int(start_time * sr) | |
| end_index = int(end_time * sr) | |
| audio_data = audio_data[start_index:end_index] | |
| # Compute the short-time Fourier transform | |
| hop_length = 512 | |
| stft = librosa.stft(audio_data, hop_length=hop_length) | |
| spectrogram = librosa.amplitude_to_db(np.abs(stft), ref=np.max) | |
| # Get the frequency values | |
| freqs = librosa.fft_frequencies(sr=sr, n_fft=stft.shape[0]) | |
| # Select the indices of the frequency values that correspond to the desired frequencies | |
| n_freqs = 114 | |
| freq_indices = np.linspace(0, len(freqs) - 1, n_freqs, dtype=int) | |
| # Extract the dB values for the desired frequencies | |
| db_values = [] | |
| for i in range(spectrogram.shape[1]): | |
| db_values.append(list(zip(freqs[freq_indices], spectrogram[freq_indices, i]))) | |
| # Print the dB values for the first time frame | |
| print(db_values[0]) | |
| proportional_values = [] | |
| for frame in db_values: | |
| proportional_frame = [db_to_height(db) for f, db in frame] | |
| proportional_values.append(proportional_frame) | |
| print(proportional_values[0]) | |
| print("AUDIO CHUNK: " + str(len(proportional_values))) | |
| # Open the background image | |
| background_image = Image.open(image_in) | |
| # Resize the image while keeping its aspect ratio | |
| bg_width, bg_height = background_image.size | |
| aspect_ratio = bg_width / bg_height | |
| new_width = 512 | |
| new_height = int(new_width / aspect_ratio) | |
| resized_bg = background_image.resize((new_width, new_height)) | |
| # Apply black cache for better visibility of the white text | |
| bg_cache = Image.open('black_cache.png') | |
| resized_bg.paste(bg_cache, (0, resized_bg.height - bg_cache.height), mask=bg_cache) | |
| # Create a new ImageDraw object | |
| draw = ImageDraw.Draw(resized_bg) | |
| # Define the text to be added | |
| text = title | |
| font = ImageFont.truetype("NotoSansSC-Regular.otf", 16) | |
| text_color = (255, 255, 255) # white color | |
| # Calculate the position of the text | |
| text_width, text_height = draw.textsize(text, font=font) | |
| x = 30 | |
| y = new_height - 70 | |
| # Draw the text on the image | |
| draw.text((x, y), text, fill=text_color, font=font) | |
| # Save the resized image | |
| resized_bg.save('resized_background.jpg') | |
| generated_frames = [] | |
| for i, frame in enumerate(proportional_values): | |
| bars_img = make_bars_image(frame, i, new_height) | |
| bars_img = Image.open(bars_img) | |
| # Paste the audio bars image on top of the background image | |
| fresh_bg = Image.open('resized_background.jpg') | |
| fresh_bg.paste(bars_img, (0, 0), mask=bars_img) | |
| # Save the image | |
| fresh_bg.save('audio_bars_with_bg' + str(i) + '.jpg') | |
| generated_frames.append('audio_bars_with_bg' + str(i) + '.jpg') | |
| print(generated_frames) | |
| # Create a video clip from the images | |
| clip = ImageSequenceClip(generated_frames, fps=len(generated_frames)/(end_time-start_time)) | |
| audio_clip = AudioFileClip(audio_in) | |
| clip = clip.set_audio(audio_clip) | |
| # Set the output codec | |
| codec = 'libx264' | |
| audio_codec = 'aac' | |
| # Save the video to a file | |
| clip.write_videofile("my_video.mp4", codec=codec, audio_codec=audio_codec) | |
| retimed_clip = VideoFileClip("my_video.mp4") | |
| # Set the desired frame rate | |
| new_fps = 25 | |
| # Create a new clip with the new frame rate | |
| new_clip = retimed_clip.set_fps(new_fps) | |
| # Save the new clip as a new video file | |
| new_clip.write_videofile("my_video_retimed.mp4", codec=codec, audio_codec=audio_codec) | |
| return "my_video_retimed.mp4" | |
| # mix vocal and non-vocal | |
| def mix(audio1, audio2): | |
| sound1 = AudioSegment.from_file(audio1) | |
| sound2 = AudioSegment.from_file(audio2) | |
| length = len(sound1) | |
| mixed = sound1[:length].overlay(sound2) | |
| mixed.export("song.wav", format="wav") | |
| return "song.wav" | |
| # Bilibili | |
| def youtube_downloader( | |
| video_identifier, | |
| start_time, | |
| end_time, | |
| output_filename="track.wav", | |
| num_attempts=5, | |
| url_base="", | |
| quiet=False, | |
| force=True, | |
| ): | |
| output_path = Path(output_filename) | |
| if output_path.exists(): | |
| if not force: | |
| return output_path | |
| else: | |
| output_path.unlink() | |
| quiet = "--quiet --no-warnings" if quiet else "" | |
| command = f""" | |
| yt-dlp {quiet} -x --audio-format wav -f bestaudio -o "{output_filename}" --download-sections "*{start_time}-{end_time}" "{url_base}{video_identifier}" # noqa: E501 | |
| """.strip() | |
| attempts = 0 | |
| while True: | |
| try: | |
| _ = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT) | |
| except subprocess.CalledProcessError: | |
| attempts += 1 | |
| if attempts == num_attempts: | |
| return None | |
| else: | |
| break | |
| if output_path.exists(): | |
| return output_path | |
| else: | |
| return None | |
| def audio_separated(audio_input, progress=gr.Progress()): | |
| # start progress | |
| progress(progress=0, desc="Starting...") | |
| time.sleep(0.1) | |
| # check file input | |
| if audio_input is None: | |
| # show progress | |
| for i in progress.tqdm(range(100), desc="Please wait..."): | |
| time.sleep(0.01) | |
| return (None, None, 'Please input audio.') | |
| # create filename | |
| filename = str(random.randint(10000,99999))+datetime.now().strftime("%d%m%Y%H%M%S") | |
| # progress | |
| progress(progress=0.10, desc="Please wait...") | |
| # make dir output | |
| os.makedirs("output", exist_ok=True) | |
| # progress | |
| progress(progress=0.20, desc="Please wait...") | |
| # write | |
| if high_quality: | |
| write(filename+".wav", audio_input[0], audio_input[1]) | |
| else: | |
| write(filename+".mp3", audio_input[0], audio_input[1]) | |
| # progress | |
| progress(progress=0.50, desc="Please wait...") | |
| # demucs process | |
| if high_quality: | |
| command_demucs = "python3 -m demucs --two-stems=vocals -d cpu "+filename+".wav -o output" | |
| else: | |
| command_demucs = "python3 -m demucs --two-stems=vocals --mp3 --mp3-bitrate 128 -d cpu "+filename+".mp3 -o output" | |
| os.system(command_demucs) | |
| # progress | |
| progress(progress=0.70, desc="Please wait...") | |
| # remove file audio | |
| if high_quality: | |
| command_delete = "rm -v ./"+filename+".wav" | |
| else: | |
| command_delete = "rm -v ./"+filename+".mp3" | |
| os.system(command_delete) | |
| # progress | |
| progress(progress=0.80, desc="Please wait...") | |
| # progress | |
| for i in progress.tqdm(range(80,100), desc="Please wait..."): | |
| time.sleep(0.1) | |
| if high_quality: | |
| return "./output/htdemucs/"+filename+"/vocals.wav","./output/htdemucs/"+filename+"/no_vocals.wav","Successfully..." | |
| else: | |
| return "./output/htdemucs/"+filename+"/vocals.mp3","./output/htdemucs/"+filename+"/no_vocals.mp3","Successfully..." | |
| # https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI/blob/main/infer-web.py#L118 # noqa | |
| def vc_func( | |
| input_audio, model_index, pitch_adjust, f0_method, feat_ratio, | |
| filter_radius, rms_mix_rate, resample_option | |
| ): | |
| if input_audio is None: | |
| return (None, 'Please provide input audio.') | |
| if model_index is None: | |
| return (None, 'Please select a model.') | |
| model = loaded_models[model_index] | |
| # Reference: so-vits | |
| (audio_samp, audio_npy) = input_audio | |
| # https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L49 | |
| # Can be change well, we will see | |
| if (audio_npy.shape[0] / audio_samp) > 600 and in_hf_space: | |
| return (None, 'Input audio is longer than 600 secs.') | |
| # Bloody hell: https://stackoverflow.com/questions/26921836/ | |
| if audio_npy.dtype != np.float32: # :thonk: | |
| audio_npy = ( | |
| audio_npy / np.iinfo(audio_npy.dtype).max | |
| ).astype(np.float32) | |
| if len(audio_npy.shape) > 1: | |
| audio_npy = librosa.to_mono(audio_npy.transpose(1, 0)) | |
| if audio_samp != 16000: | |
| audio_npy = librosa.resample( | |
| audio_npy, | |
| orig_sr=audio_samp, | |
| target_sr=16000 | |
| ) | |
| pitch_int = int(pitch_adjust) | |
| resample = ( | |
| 0 if resample_option == 'Disable resampling' | |
| else int(resample_option) | |
| ) | |
| times = [0, 0, 0] | |
| checksum = hashlib.sha512() | |
| checksum.update(audio_npy.tobytes()) | |
| output_audio = model['vc'].pipeline( | |
| hubert_model, | |
| model['net_g'], | |
| model['metadata'].get('speaker_id', 0), | |
| audio_npy, | |
| checksum.hexdigest(), | |
| times, | |
| pitch_int, | |
| f0_method, | |
| path.join('model', model['name'], model['metadata']['feat_index']), | |
| feat_ratio, | |
| model['if_f0'], | |
| filter_radius, | |
| model['target_sr'], | |
| resample, | |
| rms_mix_rate, | |
| 'v2' | |
| ) | |
| out_sr = ( | |
| resample if resample >= 16000 and model['target_sr'] != resample | |
| else model['target_sr'] | |
| ) | |
| print(f'npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s') | |
| return ((out_sr, output_audio), 'Success') | |
| async def edge_tts_vc_func( | |
| input_text, model_index, tts_speaker, pitch_adjust, f0_method, feat_ratio, | |
| filter_radius, rms_mix_rate, resample_option | |
| ): | |
| if input_text is None: | |
| return (None, 'Please provide TTS text.') | |
| if tts_speaker is None: | |
| return (None, 'Please select TTS speaker.') | |
| if model_index is None: | |
| return (None, 'Please select a model.') | |
| speaker = tts_speakers_list[tts_speaker]['ShortName'] | |
| (tts_np, tts_sr) = await util.call_edge_tts(speaker, input_text) | |
| return vc_func( | |
| (tts_sr, tts_np), | |
| model_index, | |
| pitch_adjust, | |
| f0_method, | |
| feat_ratio, | |
| filter_radius, | |
| rms_mix_rate, | |
| resample_option | |
| ) | |
| def update_model_info(model_index): | |
| if model_index is None: | |
| return str( | |
| '### Model info\n' | |
| 'Please select a model from dropdown above.' | |
| ) | |
| model = loaded_models[model_index] | |
| model_icon = model['metadata'].get('icon', '') | |
| return str( | |
| '### Model info\n' | |
| '' | |
| '**{name}**\n\n' | |
| 'Author: {author}\n\n' | |
| 'Source: {source}\n\n' | |
| '{note}' | |
| ).format( | |
| name=model['metadata'].get('name'), | |
| author=model['metadata'].get('author', 'Anonymous'), | |
| source=model['metadata'].get('source', 'Unknown'), | |
| note=model['metadata'].get('note', ''), | |
| icon=( | |
| model_icon | |
| if model_icon.startswith(('http://', 'https://')) | |
| else '/file/model/%s/%s' % (model['name'], model_icon) | |
| ) | |
| ) | |
| def _example_vc( | |
| input_audio, model_index, pitch_adjust, f0_method, feat_ratio, | |
| filter_radius, rms_mix_rate, resample_option | |
| ): | |
| (audio, message) = vc_func( | |
| input_audio, model_index, pitch_adjust, f0_method, feat_ratio, | |
| filter_radius, rms_mix_rate, resample_option | |
| ) | |
| return ( | |
| audio, | |
| message, | |
| update_model_info(model_index) | |
| ) | |
| async def _example_edge_tts( | |
| input_text, model_index, tts_speaker, pitch_adjust, f0_method, feat_ratio, | |
| filter_radius, rms_mix_rate, resample_option | |
| ): | |
| (audio, message) = await edge_tts_vc_func( | |
| input_text, model_index, tts_speaker, pitch_adjust, f0_method, | |
| feat_ratio, filter_radius, rms_mix_rate, resample_option | |
| ) | |
| return ( | |
| audio, | |
| message, | |
| update_model_info(model_index) | |
| ) | |
| with app: | |
| gr.HTML("<center>" | |
| "<h1>🥳🎶🎡 - AI歌手数字人+RVC最新算法</h1>" | |
| "</center>") | |
| gr.Markdown("### <center>🌊 - 身临其境般的AI音乐体验,AI歌手“想把我唱给你听”;Powered by [RVC-Project](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)</center>") | |
| gr.Markdown("### <center>更多精彩应用,敬请关注[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕</center>") | |
| with gr.Tab("🤗 - 轻松提取音乐"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| ydl_url_input = gr.Textbox(label="音乐视频网址(可直接填写相应的BV号)", value = "https://www.bilibili.com/video/BV...") | |
| start = gr.Number(value=0, label="起始时间 (秒)") | |
| end = gr.Number(value=15, label="结束时间 (秒)") | |
| ydl_url_submit = gr.Button("提取声音文件吧", variant="primary") | |
| as_audio_submit = gr.Button("去除背景音吧", variant="primary") | |
| with gr.Column(): | |
| ydl_audio_output = gr.Audio(label="歌曲原声") | |
| as_audio_input = ydl_audio_output | |
| as_audio_vocals = gr.Audio(label="歌曲人声部分") | |
| as_audio_no_vocals = gr.Audio(label="歌曲伴奏部分", type="filepath") | |
| as_audio_message = gr.Textbox(label="Message", visible=False) | |
| ydl_url_submit.click(fn=youtube_downloader, inputs=[ydl_url_input, start, end], outputs=[ydl_audio_output]) | |
| as_audio_submit.click(fn=audio_separated, inputs=[as_audio_input], outputs=[as_audio_vocals, as_audio_no_vocals, as_audio_message], show_progress=True, queue=True) | |
| with gr.Row(): | |
| with gr.Tab('🎶 - 歌声转换'): | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_audio = as_audio_vocals | |
| vc_convert_btn = gr.Button('进行歌声转换吧!', variant='primary') | |
| full_song = gr.Button("加入歌曲伴奏吧!", variant="primary") | |
| new_song = gr.Audio(label="AI歌手+伴奏", type="filepath") | |
| pitch_adjust = gr.Slider( | |
| label='变调(默认为0;+2为升高两个key)', | |
| minimum=-12, | |
| maximum=12, | |
| step=1, | |
| value=0 | |
| ) | |
| f0_method = gr.Radio( | |
| label='人声提取方法(pm时间更短;rmvpe效果更好)', | |
| choices=['pm', 'rmvpe'], | |
| value='pm', | |
| interactive=True | |
| ) | |
| with gr.Accordion('更多设置', open=False): | |
| feat_ratio = gr.Slider( | |
| label='Feature ratio', | |
| minimum=0, | |
| maximum=1, | |
| step=0.1, | |
| value=0.6, | |
| visible=False | |
| ) | |
| filter_radius = gr.Slider( | |
| label='Filter radius', | |
| minimum=0, | |
| maximum=7, | |
| step=1, | |
| value=3, | |
| visible=False | |
| ) | |
| rms_mix_rate = gr.Slider( | |
| label='Volume envelope mix rate', | |
| minimum=0, | |
| maximum=1, | |
| step=0.1, | |
| value=1, | |
| visible=False | |
| ) | |
| resample_rate = gr.Dropdown( | |
| [ | |
| 'Disable resampling', | |
| '16000', | |
| '22050', | |
| '44100', | |
| '48000' | |
| ], | |
| label='是否更新采样率(默认为否)', | |
| value='Disable resampling' | |
| ) | |
| with gr.Column(): | |
| # Model select | |
| model_index = gr.Dropdown( | |
| [ | |
| '%s - %s' % ( | |
| m['metadata'].get('source', 'Unknown'), | |
| m['metadata'].get('name') | |
| ) | |
| for m in loaded_models | |
| ], | |
| label='请选择您的AI歌手(必选)', | |
| type='index' | |
| ) | |
| # Model info | |
| with gr.Box(): | |
| model_info = gr.Markdown( | |
| '### AI歌手信息\n' | |
| 'Please select a model from dropdown above.', | |
| elem_id='model_info' | |
| ) | |
| output_audio = gr.Audio(label='AI歌手(无伴奏)', type="filepath") | |
| output_msg = gr.Textbox(label='Output message', visible=False) | |
| vc_convert_btn.click( | |
| vc_func, | |
| [ | |
| input_audio, model_index, pitch_adjust, f0_method, feat_ratio, | |
| filter_radius, rms_mix_rate, resample_rate | |
| ], | |
| [output_audio, output_msg], | |
| api_name='audio_conversion' | |
| ) | |
| full_song.click(fn=mix, inputs=[output_audio, as_audio_no_vocals], outputs=[new_song]) | |
| model_index.change( | |
| update_model_info, | |
| inputs=[model_index], | |
| outputs=[model_info], | |
| show_progress=False, | |
| queue=False | |
| ) | |
| with gr.Tab("📺 - 音乐视频"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| inp1 = gr.Textbox(label="为视频配上精彩的文案吧(选填)") | |
| inp2 = new_song | |
| inp3 = gr.Image(source='upload', type='filepath', label="上传一张背景图片吧") | |
| btn = gr.Button("生成您的专属音乐视频吧", variant="primary") | |
| with gr.Column(): | |
| out1 = gr.Video(label='您的专属音乐视频').style(width=512) | |
| btn.click(fn=infer, inputs=[inp1, inp2, inp3], outputs=[out1]) | |
| with gr.Tab("🤵♀️ - AI歌手数字人"): | |
| with gr.Row().style(equal_height=False): | |
| with gr.Column(variant='panel'): | |
| with gr.Tabs(elem_id="sadtalker_source_image"): | |
| with gr.TabItem('图片上传'): | |
| with gr.Row(): | |
| source_image = gr.Image(label="请上传一张您喜欢角色的图片", source="upload", type="filepath", elem_id="img2img_image").style(width=512) | |
| with gr.Tabs(elem_id="sadtalker_driven_audio"): | |
| with gr.TabItem('💕倾情演绎'): | |
| with gr.Column(variant='panel'): | |
| driven_audio = output_audio | |
| submit = gr.Button('想把我唱给你听', elem_id="sadtalker_generate", variant='primary') | |
| gen_mv = gr.Button('为视频添加伴奏吧', variant='primary') | |
| with gr.Row(): | |
| gen_video = gr.Video(label="AI歌手数字人视频", format="mp4", interactive=False).style(width=256) | |
| inp_mv_1 = gen_video | |
| inp_mv_2 = as_audio_no_vocals | |
| music_video = gr.Video(label="视频+伴奏", format="mp4").style(width=256) | |
| with gr.Column(variant='panel'): | |
| with gr.Tabs(elem_id="sadtalker_checkbox"): | |
| with gr.TabItem('视频设置'): | |
| with gr.Column(variant='panel'): | |
| # width = gr.Slider(minimum=64, elem_id="img2img_width", maximum=2048, step=8, label="Manually Crop Width", value=512) # img2img_width | |
| # height = gr.Slider(minimum=64, elem_id="img2img_height", maximum=2048, step=8, label="Manually Crop Height", value=512) # img2img_width | |
| pose_style = gr.Slider(minimum=0, maximum=46, step=1, label="Pose style", value=0, visible=False) # | |
| size_of_image = gr.Radio([256, 512], value=256, label='face model resolution', info="use 256/512 model?", visible=False) # | |
| preprocess_type = gr.Radio(['crop', 'extfull'], value='crop', label='是否聚焦角色面部', info="crop:视频会聚焦角色面部;extfull:视频会显示图片全貌") | |
| is_still_mode = gr.Checkbox(label="静态模式 (开启静态模式,角色的面部动作会减少;默认开启)", value=True, visible=False) | |
| batch_size = gr.Slider(label="Batch size (数值越大,生成速度越快;若显卡性能好,可增大数值)", step=1, maximum=32, value=4) | |
| enhancer = gr.Checkbox(label="GFPGAN as Face enhancer", visible=False) | |
| submit.click( | |
| fn=sad_talker.test, | |
| inputs=[source_image, | |
| driven_audio, | |
| preprocess_type, | |
| is_still_mode, | |
| enhancer, | |
| batch_size, | |
| size_of_image, | |
| pose_style | |
| ], | |
| outputs=[gen_video] | |
| ) | |
| gen_mv.click(fn=combine_music, inputs=[inp_mv_1, inp_mv_2], outputs=[music_video]) | |
| gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。</center>") | |
| gr.Markdown("<center>🧸 - 如何使用此程序:填写视频网址和视频起止时间后,依次点击“提取声音文件吧”、“去除背景音吧”、“进行歌声转换吧!”、“加入歌曲伴奏吧!”四个按键即可。</center>") | |
| gr.HTML(''' | |
| <div class="footer"> | |
| <p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘 | |
| </p> | |
| </div> | |
| ''') | |
| app.queue( | |
| concurrency_count=1, | |
| max_size=20, | |
| api_open=args.api | |
| ).launch(show_error=True) |