Spaces:
Runtime error
Runtime error
import argparse | |
import logging | |
import os | |
import pathlib | |
import time | |
import tempfile | |
import platform | |
if platform.system().lower() == 'windows': | |
temp = pathlib.PosixPath | |
pathlib.PosixPath = pathlib.WindowsPath | |
elif platform.system().lower() == 'linux': | |
temp = pathlib.WindowsPath | |
pathlib.WindowsPath = pathlib.PosixPath | |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" | |
import langid | |
langid.set_languages(['en', 'zh', 'ja']) | |
import torch | |
import torchaudio | |
import random | |
import numpy as np | |
from data.tokenizer import ( | |
AudioTokenizer, | |
tokenize_audio, | |
) | |
from data.collation import get_text_token_collater | |
from models.vallex import VALLE | |
from utils.g2p import PhonemeBpeTokenizer | |
from descriptions import * | |
from macros import * | |
import gradio as gr | |
import whisper | |
import multiprocessing | |
import math | |
import tempfile | |
from typing import Optional, Tuple, Union | |
import matplotlib.pyplot as plt | |
from loguru import logger | |
from PIL import Image | |
from torch import Tensor | |
from torchaudio.backend.common import AudioMetaData | |
from df import config | |
from df.enhance import enhance, init_df, load_audio, save_audio | |
from df.io import resample | |
thread_count = multiprocessing.cpu_count() | |
print("Use",thread_count,"cpu cores for computing") | |
torch.set_num_threads(thread_count) | |
torch.set_num_interop_threads(thread_count) | |
torch._C._jit_set_profiling_executor(False) | |
torch._C._jit_set_profiling_mode(False) | |
torch._C._set_graph_executor_optimize(False) | |
text_tokenizer = PhonemeBpeTokenizer(tokenizer_path="./utils/g2p/bpe_69.json") | |
text_collater = get_text_token_collater() | |
device = torch.device("cpu") | |
if torch.cuda.is_available(): | |
device = torch.device("cuda", 0) | |
# Denoise | |
model1, df, _ = init_df("./DeepFilterNet2", config_allow_defaults=True) | |
model1 = model1.to(device=device).eval() | |
fig_noisy: plt.Figure | |
fig_enh: plt.Figure | |
ax_noisy: plt.Axes | |
ax_enh: plt.Axes | |
fig_noisy, ax_noisy = plt.subplots(figsize=(15.2, 4)) | |
fig_noisy.set_tight_layout(True) | |
fig_enh, ax_enh = plt.subplots(figsize=(15.2, 4)) | |
fig_enh.set_tight_layout(True) | |
NOISES = { | |
"None": None, | |
} | |
def mix_at_snr(clean, noise, snr, eps=1e-10): | |
"""Mix clean and noise signal at a given SNR. | |
Args: | |
clean: 1D Tensor with the clean signal to mix. | |
noise: 1D Tensor of shape. | |
snr: Signal to noise ratio. | |
Returns: | |
clean: 1D Tensor with gain changed according to the snr. | |
noise: 1D Tensor with the combined noise channels. | |
mix: 1D Tensor with added clean and noise signals. | |
""" | |
clean = torch.as_tensor(clean).mean(0, keepdim=True) | |
noise = torch.as_tensor(noise).mean(0, keepdim=True) | |
if noise.shape[1] < clean.shape[1]: | |
noise = noise.repeat((1, int(math.ceil(clean.shape[1] / noise.shape[1])))) | |
max_start = int(noise.shape[1] - clean.shape[1]) | |
start = torch.randint(0, max_start, ()).item() if max_start > 0 else 0 | |
logger.debug(f"start: {start}, {clean.shape}") | |
noise = noise[:, start : start + clean.shape[1]] | |
E_speech = torch.mean(clean.pow(2)) + eps | |
E_noise = torch.mean(noise.pow(2)) | |
K = torch.sqrt((E_noise / E_speech) * 10 ** (snr / 10) + eps) | |
noise = noise / K | |
mixture = clean + noise | |
logger.debug("mixture: {mixture.shape}") | |
assert torch.isfinite(mixture).all() | |
max_m = mixture.abs().max() | |
if max_m > 1: | |
logger.warning(f"Clipping detected during mixing. Reducing gain by {1/max_m}") | |
clean, noise, mixture = clean / max_m, noise / max_m, mixture / max_m | |
return clean, noise, mixture | |
def load_audio_gradio( | |
audio_or_file: Union[None, str, Tuple[int, np.ndarray]], sr: int | |
) -> Optional[Tuple[Tensor, AudioMetaData]]: | |
if audio_or_file is None: | |
return None | |
if isinstance(audio_or_file, str): | |
if audio_or_file.lower() == "none": | |
return None | |
# First try default format | |
audio, meta = load_audio(audio_or_file, sr) | |
else: | |
meta = AudioMetaData(-1, -1, -1, -1, "") | |
assert isinstance(audio_or_file, (tuple, list)) | |
meta.sample_rate, audio_np = audio_or_file | |
# Gradio documentation says, the shape is [samples, 2], but apparently sometimes its not. | |
audio_np = audio_np.reshape(audio_np.shape[0], -1).T | |
if audio_np.dtype == np.int16: | |
audio_np = (audio_np / (1 << 15)).astype(np.float32) | |
elif audio_np.dtype == np.int32: | |
audio_np = (audio_np / (1 << 31)).astype(np.float32) | |
audio = resample(torch.from_numpy(audio_np), meta.sample_rate, sr) | |
return audio, meta | |
def demo_fn(speech_upl: str, noise_type: str, snr: int, mic_input: str): | |
if mic_input: | |
speech_upl = mic_input | |
sr = config("sr", 48000, int, section="df") | |
logger.info(f"Got parameters speech_upl: {speech_upl}, noise: {noise_type}, snr: {snr}") | |
snr = int(snr) | |
noise_fn = NOISES[noise_type] | |
meta = AudioMetaData(-1, -1, -1, -1, "") | |
max_s = 10 # limit to 10 seconds | |
if speech_upl is not None: | |
sample, meta = load_audio(speech_upl, sr) | |
max_len = max_s * sr | |
if sample.shape[-1] > max_len: | |
start = torch.randint(0, sample.shape[-1] - max_len, ()).item() | |
sample = sample[..., start : start + max_len] | |
else: | |
sample, meta = load_audio("samples/p232_013_clean.wav", sr) | |
sample = sample[..., : max_s * sr] | |
if sample.dim() > 1 and sample.shape[0] > 1: | |
assert ( | |
sample.shape[1] > sample.shape[0] | |
), f"Expecting channels first, but got {sample.shape}" | |
sample = sample.mean(dim=0, keepdim=True) | |
logger.info(f"Loaded sample with shape {sample.shape}") | |
if noise_fn is not None: | |
noise, _ = load_audio(noise_fn, sr) # type: ignore | |
logger.info(f"Loaded noise with shape {noise.shape}") | |
_, _, sample = mix_at_snr(sample, noise, snr) | |
logger.info("Start denoising audio") | |
enhanced = enhance(model1, df, sample) | |
logger.info("Denoising finished") | |
lim = torch.linspace(0.0, 1.0, int(sr * 0.15)).unsqueeze(0) | |
lim = torch.cat((lim, torch.ones(1, enhanced.shape[1] - lim.shape[1])), dim=1) | |
enhanced = enhanced * lim | |
if meta.sample_rate != sr: | |
enhanced = resample(enhanced, sr, meta.sample_rate) | |
sample = resample(sample, sr, meta.sample_rate) | |
sr = meta.sample_rate | |
noisy_wav = tempfile.NamedTemporaryFile(suffix="noisy.wav", delete=False).name | |
save_audio(noisy_wav, sample, sr) | |
enhanced_wav = tempfile.NamedTemporaryFile(suffix="enhanced.wav", delete=False).name | |
save_audio(enhanced_wav, enhanced, sr) | |
logger.info(f"saved audios: {noisy_wav}, {enhanced_wav}") | |
ax_noisy.clear() | |
ax_enh.clear() | |
noisy_im = spec_im(sample, sr=sr, figure=fig_noisy, ax=ax_noisy) | |
enh_im = spec_im(enhanced, sr=sr, figure=fig_enh, ax=ax_enh) | |
# noisy_wav = gr.make_waveform(noisy_fn, bar_count=200) | |
# enh_wav = gr.make_waveform(enhanced_fn, bar_count=200) | |
return noisy_wav, noisy_im, enhanced_wav, enh_im | |
def specshow( | |
spec, | |
ax=None, | |
title=None, | |
xlabel=None, | |
ylabel=None, | |
sr=48000, | |
n_fft=None, | |
hop=None, | |
t=None, | |
f=None, | |
vmin=-100, | |
vmax=0, | |
xlim=None, | |
ylim=None, | |
cmap="inferno", | |
): | |
"""Plots a spectrogram of shape [F, T]""" | |
spec_np = spec.cpu().numpy() if isinstance(spec, torch.Tensor) else spec | |
if ax is not None: | |
set_title = ax.set_title | |
set_xlabel = ax.set_xlabel | |
set_ylabel = ax.set_ylabel | |
set_xlim = ax.set_xlim | |
set_ylim = ax.set_ylim | |
else: | |
ax = plt | |
set_title = plt.title | |
set_xlabel = plt.xlabel | |
set_ylabel = plt.ylabel | |
set_xlim = plt.xlim | |
set_ylim = plt.ylim | |
if n_fft is None: | |
if spec.shape[0] % 2 == 0: | |
n_fft = spec.shape[0] * 2 | |
else: | |
n_fft = (spec.shape[0] - 1) * 2 | |
hop = hop or n_fft // 4 | |
if t is None: | |
t = np.arange(0, spec_np.shape[-1]) * hop / sr | |
if f is None: | |
f = np.arange(0, spec_np.shape[0]) * sr // 2 / (n_fft // 2) / 1000 | |
im = ax.pcolormesh( | |
t, f, spec_np, rasterized=True, shading="auto", vmin=vmin, vmax=vmax, cmap=cmap | |
) | |
if title is not None: | |
set_title(title) | |
if xlabel is not None: | |
set_xlabel(xlabel) | |
if ylabel is not None: | |
set_ylabel(ylabel) | |
if xlim is not None: | |
set_xlim(xlim) | |
if ylim is not None: | |
set_ylim(ylim) | |
return im | |
def spec_im( | |
audio: torch.Tensor, | |
figsize=(15, 5), | |
colorbar=False, | |
colorbar_format=None, | |
figure=None, | |
labels=True, | |
**kwargs, | |
) -> Image: | |
audio = torch.as_tensor(audio) | |
if labels: | |
kwargs.setdefault("xlabel", "Time [s]") | |
kwargs.setdefault("ylabel", "Frequency [Hz]") | |
n_fft = kwargs.setdefault("n_fft", 1024) | |
hop = kwargs.setdefault("hop", 512) | |
w = torch.hann_window(n_fft, device=audio.device) | |
spec = torch.stft(audio, n_fft, hop, window=w, return_complex=False) | |
spec = spec.div_(w.pow(2).sum()) | |
spec = torch.view_as_complex(spec).abs().clamp_min(1e-12).log10().mul(10) | |
kwargs.setdefault("vmax", max(0.0, spec.max().item())) | |
if figure is None: | |
figure = plt.figure(figsize=figsize) | |
figure.set_tight_layout(True) | |
if spec.dim() > 2: | |
spec = spec.squeeze(0) | |
im = specshow(spec, **kwargs) | |
if colorbar: | |
ckwargs = {} | |
if "ax" in kwargs: | |
if colorbar_format is None: | |
if kwargs.get("vmin", None) is not None or kwargs.get("vmax", None) is not None: | |
colorbar_format = "%+2.0f dB" | |
ckwargs = {"ax": kwargs["ax"]} | |
plt.colorbar(im, format=colorbar_format, **ckwargs) | |
figure.canvas.draw() | |
return Image.frombytes("RGB", figure.canvas.get_width_height(), figure.canvas.tostring_rgb()) | |
def toggle(choice): | |
if choice == "mic": | |
return gr.update(visible=True, value=None), gr.update(visible=False, value=None) | |
else: | |
return gr.update(visible=False, value=None), gr.update(visible=True, value=None) | |
# VALL-E-X model | |
model = VALLE( | |
N_DIM, | |
NUM_HEAD, | |
NUM_LAYERS, | |
norm_first=True, | |
add_prenet=False, | |
prefix_mode=PREFIX_MODE, | |
share_embedding=True, | |
nar_scale_factor=1.0, | |
prepend_bos=True, | |
num_quantizers=NUM_QUANTIZERS, | |
) | |
checkpoint = torch.load("./epoch-10.pt", map_location='cpu') | |
missing_keys, unexpected_keys = model.load_state_dict( | |
checkpoint["model"], strict=True | |
) | |
assert not missing_keys | |
model.eval() | |
# Encodec model | |
audio_tokenizer = AudioTokenizer(device) | |
# ASR | |
whisper_model = whisper.load_model("medium").cpu() | |
# Voice Presets | |
preset_list = os.walk("./presets/").__next__()[2] | |
preset_list = [preset[:-4] for preset in preset_list if preset.endswith(".npz")] | |
def clear_prompts(): | |
try: | |
path = tempfile.gettempdir() | |
for eachfile in os.listdir(path): | |
filename = os.path.join(path, eachfile) | |
if os.path.isfile(filename) and filename.endswith(".npz"): | |
lastmodifytime = os.stat(filename).st_mtime | |
endfiletime = time.time() - 60 | |
if endfiletime > lastmodifytime: | |
os.remove(filename) | |
except: | |
return | |
def transcribe_one(model, audio_path): | |
# load audio and pad/trim it to fit 30 seconds | |
audio = whisper.load_audio(audio_path) | |
audio = whisper.pad_or_trim(audio) | |
# make log-Mel spectrogram and move to the same device as the model | |
mel = whisper.log_mel_spectrogram(audio).to(model.device) | |
# detect the spoken language | |
_, probs = model.detect_language(mel) | |
print(f"Detected language: {max(probs, key=probs.get)}") | |
lang = max(probs, key=probs.get) | |
# decode the audio | |
options = whisper.DecodingOptions(temperature=1.0, best_of=5, fp16=False if device == torch.device("cpu") else True, sample_len=150) | |
result = whisper.decode(model, mel, options) | |
# print the recognized text | |
print(result.text) | |
text_pr = result.text | |
if text_pr.strip(" ")[-1] not in "?!.,。,?!。、": | |
text_pr += "." | |
return lang, text_pr | |
def make_npz_prompt(name, uploaded_audio, recorded_audio, transcript_content): | |
global model, text_collater, text_tokenizer, audio_tokenizer | |
clear_prompts() | |
audio_prompt = uploaded_audio if uploaded_audio is not None else recorded_audio | |
sr, wav_pr = audio_prompt | |
if len(wav_pr) / sr > 15: | |
return "Rejected, Audio too long (should be less than 15 seconds)", None | |
if not isinstance(wav_pr, torch.FloatTensor): | |
wav_pr = torch.FloatTensor(wav_pr) | |
if wav_pr.abs().max() > 1: | |
wav_pr /= wav_pr.abs().max() | |
if wav_pr.size(-1) == 2: | |
wav_pr = wav_pr[:, 0] | |
if wav_pr.ndim == 1: | |
wav_pr = wav_pr.unsqueeze(0) | |
assert wav_pr.ndim and wav_pr.size(0) == 1 | |
if transcript_content == "": | |
text_pr, lang_pr = make_prompt(name, wav_pr, sr, save=False) | |
else: | |
lang_pr = langid.classify(str(transcript_content))[0] | |
lang_token = lang2token[lang_pr] | |
text_pr = f"{lang_token}{str(transcript_content)}{lang_token}" | |
# tokenize audio | |
encoded_frames = tokenize_audio(audio_tokenizer, (wav_pr, sr)) | |
audio_tokens = encoded_frames[0][0].transpose(2, 1).cpu().numpy() | |
# tokenize text | |
phonemes, _ = text_tokenizer.tokenize(text=f"{text_pr}".strip()) | |
text_tokens, enroll_x_lens = text_collater( | |
[ | |
phonemes | |
] | |
) | |
message = f"Detected language: {lang_pr}\n Detected text {text_pr}\n" | |
# save as npz file | |
np.savez(os.path.join(tempfile.gettempdir(), f"{name}.npz"), | |
audio_tokens=audio_tokens, text_tokens=text_tokens, lang_code=lang2code[lang_pr]) | |
return "提取音色成功!", os.path.join(tempfile.gettempdir(), f"{name}.npz") | |
def make_prompt(name, wav, sr, save=True): | |
global whisper_model | |
whisper_model.to(device) | |
if not isinstance(wav, torch.FloatTensor): | |
wav = torch.tensor(wav) | |
if wav.abs().max() > 1: | |
wav /= wav.abs().max() | |
if wav.size(-1) == 2: | |
wav = wav.mean(-1, keepdim=False) | |
if wav.ndim == 1: | |
wav = wav.unsqueeze(0) | |
assert wav.ndim and wav.size(0) == 1 | |
torchaudio.save(f"./prompts/{name}.wav", wav, sr) | |
lang, text = transcribe_one(whisper_model, f"./prompts/{name}.wav") | |
lang_token = lang2token[lang] | |
text = lang_token + text + lang_token | |
with open(f"./prompts/{name}.txt", 'w') as f: | |
f.write(text) | |
if not save: | |
os.remove(f"./prompts/{name}.wav") | |
os.remove(f"./prompts/{name}.txt") | |
whisper_model.cpu() | |
torch.cuda.empty_cache() | |
return text, lang | |
def infer_from_audio(text, language, accent, audio_prompt, record_audio_prompt, transcript_content): | |
if len(text) > 150: | |
return "Rejected, Text too long (should be less than 150 characters)", None | |
global model, text_collater, text_tokenizer, audio_tokenizer | |
model.to(device) | |
audio_prompt = audio_prompt if audio_prompt is not None else record_audio_prompt | |
sr, wav_pr = audio_prompt | |
if len(wav_pr) / sr > 15: | |
return "Rejected, Audio too long (should be less than 15 seconds)", None | |
if not isinstance(wav_pr, torch.FloatTensor): | |
wav_pr = torch.FloatTensor(wav_pr) | |
if wav_pr.abs().max() > 1: | |
wav_pr /= wav_pr.abs().max() | |
if wav_pr.size(-1) == 2: | |
wav_pr = wav_pr[:, 0] | |
if wav_pr.ndim == 1: | |
wav_pr = wav_pr.unsqueeze(0) | |
assert wav_pr.ndim and wav_pr.size(0) == 1 | |
if transcript_content == "": | |
text_pr, lang_pr = make_prompt('dummy', wav_pr, sr, save=False) | |
else: | |
lang_pr = langid.classify(str(transcript_content))[0] | |
lang_token = lang2token[lang_pr] | |
text_pr = f"{lang_token}{str(transcript_content)}{lang_token}" | |
if language == 'auto-detect': | |
lang_token = lang2token[langid.classify(text)[0]] | |
else: | |
lang_token = langdropdown2token[language] | |
lang = token2lang[lang_token] | |
text = lang_token + text + lang_token | |
# onload model | |
model.to(device) | |
# tokenize audio | |
encoded_frames = tokenize_audio(audio_tokenizer, (wav_pr, sr)) | |
audio_prompts = encoded_frames[0][0].transpose(2, 1).to(device) | |
# tokenize text | |
logging.info(f"synthesize text: {text}") | |
phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip()) | |
text_tokens, text_tokens_lens = text_collater( | |
[ | |
phone_tokens | |
] | |
) | |
enroll_x_lens = None | |
if text_pr: | |
text_prompts, _ = text_tokenizer.tokenize(text=f"{text_pr}".strip()) | |
text_prompts, enroll_x_lens = text_collater( | |
[ | |
text_prompts | |
] | |
) | |
text_tokens = torch.cat([text_prompts, text_tokens], dim=-1) | |
text_tokens_lens += enroll_x_lens | |
lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] | |
encoded_frames = model.inference( | |
text_tokens.to(device), | |
text_tokens_lens.to(device), | |
audio_prompts, | |
enroll_x_lens=enroll_x_lens, | |
top_k=-100, | |
temperature=1, | |
prompt_language=lang_pr, | |
text_language=langs if accent == "no-accent" else lang, | |
) | |
samples = audio_tokenizer.decode( | |
[(encoded_frames.transpose(2, 1), None)] | |
) | |
# offload model | |
model.to('cpu') | |
torch.cuda.empty_cache() | |
message = f"text prompt: {text_pr}\nsythesized text: {text}" | |
return message, (24000, samples[0][0].cpu().numpy()) | |
def infer_from_prompt(text, language, accent, preset_prompt, prompt_file): | |
if len(text) > 150: | |
return "Rejected, Text too long (should be less than 150 characters)", None | |
clear_prompts() | |
model.to(device) | |
# text to synthesize | |
if language == 'auto-detect': | |
lang_token = lang2token[langid.classify(text)[0]] | |
else: | |
lang_token = langdropdown2token[language] | |
lang = token2lang[lang_token] | |
text = lang_token + text + lang_token | |
# load prompt | |
if prompt_file is not None: | |
prompt_data = np.load(prompt_file.name) | |
else: | |
prompt_data = np.load(os.path.join("./presets/", f"{preset_prompt}.npz")) | |
audio_prompts = prompt_data['audio_tokens'] | |
text_prompts = prompt_data['text_tokens'] | |
lang_pr = prompt_data['lang_code'] | |
lang_pr = code2lang[int(lang_pr)] | |
# numpy to tensor | |
audio_prompts = torch.tensor(audio_prompts).type(torch.int32).to(device) | |
text_prompts = torch.tensor(text_prompts).type(torch.int32) | |
enroll_x_lens = text_prompts.shape[-1] | |
logging.info(f"synthesize text: {text}") | |
phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip()) | |
text_tokens, text_tokens_lens = text_collater( | |
[ | |
phone_tokens | |
] | |
) | |
text_tokens = torch.cat([text_prompts, text_tokens], dim=-1) | |
text_tokens_lens += enroll_x_lens | |
# accent control | |
lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] | |
encoded_frames = model.inference( | |
text_tokens.to(device), | |
text_tokens_lens.to(device), | |
audio_prompts, | |
enroll_x_lens=enroll_x_lens, | |
top_k=-100, | |
temperature=1, | |
prompt_language=lang_pr, | |
text_language=langs if accent == "no-accent" else lang, | |
) | |
samples = audio_tokenizer.decode( | |
[(encoded_frames.transpose(2, 1), None)] | |
) | |
model.to('cpu') | |
torch.cuda.empty_cache() | |
message = f"sythesized text: {text}" | |
return message, (24000, samples[0][0].cpu().numpy()) | |
from utils.sentence_cutter import split_text_into_sentences | |
def infer_long_text(text, preset_prompt, prompt=None, language='auto', accent='no-accent'): | |
""" | |
For long audio generation, two modes are available. | |
fixed-prompt: This mode will keep using the same prompt the user has provided, and generate audio sentence by sentence. | |
sliding-window: This mode will use the last sentence as the prompt for the next sentence, but has some concern on speaker maintenance. | |
""" | |
if len(text) > 1000: | |
return "Rejected, Text too long (should be less than 1000 characters)", None | |
mode = 'fixed-prompt' | |
global model, audio_tokenizer, text_tokenizer, text_collater | |
model.to(device) | |
if (prompt is None or prompt == "") and preset_prompt == "": | |
mode = 'sliding-window' # If no prompt is given, use sliding-window mode | |
sentences = split_text_into_sentences(text) | |
# detect language | |
if language == "auto-detect": | |
language = langid.classify(text)[0] | |
else: | |
language = token2lang[langdropdown2token[language]] | |
# if initial prompt is given, encode it | |
if prompt is not None and prompt != "": | |
# load prompt | |
prompt_data = np.load(prompt.name) | |
audio_prompts = prompt_data['audio_tokens'] | |
text_prompts = prompt_data['text_tokens'] | |
lang_pr = prompt_data['lang_code'] | |
lang_pr = code2lang[int(lang_pr)] | |
# numpy to tensor | |
audio_prompts = torch.tensor(audio_prompts).type(torch.int32).to(device) | |
text_prompts = torch.tensor(text_prompts).type(torch.int32) | |
elif preset_prompt is not None and preset_prompt != "": | |
prompt_data = np.load(os.path.join("./presets/", f"{preset_prompt}.npz")) | |
audio_prompts = prompt_data['audio_tokens'] | |
text_prompts = prompt_data['text_tokens'] | |
lang_pr = prompt_data['lang_code'] | |
lang_pr = code2lang[int(lang_pr)] | |
# numpy to tensor | |
audio_prompts = torch.tensor(audio_prompts).type(torch.int32).to(device) | |
text_prompts = torch.tensor(text_prompts).type(torch.int32) | |
else: | |
audio_prompts = torch.zeros([1, 0, NUM_QUANTIZERS]).type(torch.int32).to(device) | |
text_prompts = torch.zeros([1, 0]).type(torch.int32) | |
lang_pr = language if language != 'mix' else 'en' | |
if mode == 'fixed-prompt': | |
complete_tokens = torch.zeros([1, NUM_QUANTIZERS, 0]).type(torch.LongTensor).to(device) | |
for text in sentences: | |
text = text.replace("\n", "").strip(" ") | |
if text == "": | |
continue | |
lang_token = lang2token[language] | |
lang = token2lang[lang_token] | |
text = lang_token + text + lang_token | |
enroll_x_lens = text_prompts.shape[-1] | |
logging.info(f"synthesize text: {text}") | |
phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip()) | |
text_tokens, text_tokens_lens = text_collater( | |
[ | |
phone_tokens | |
] | |
) | |
text_tokens = torch.cat([text_prompts, text_tokens], dim=-1) | |
text_tokens_lens += enroll_x_lens | |
# accent control | |
lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] | |
encoded_frames = model.inference( | |
text_tokens.to(device), | |
text_tokens_lens.to(device), | |
audio_prompts, | |
enroll_x_lens=enroll_x_lens, | |
top_k=-100, | |
temperature=1, | |
prompt_language=lang_pr, | |
text_language=langs if accent == "no-accent" else lang, | |
) | |
complete_tokens = torch.cat([complete_tokens, encoded_frames.transpose(2, 1)], dim=-1) | |
samples = audio_tokenizer.decode( | |
[(complete_tokens, None)] | |
) | |
model.to('cpu') | |
message = f"Cut into {len(sentences)} sentences" | |
return message, (24000, samples[0][0].cpu().numpy()) | |
elif mode == "sliding-window": | |
complete_tokens = torch.zeros([1, NUM_QUANTIZERS, 0]).type(torch.LongTensor).to(device) | |
original_audio_prompts = audio_prompts | |
original_text_prompts = text_prompts | |
for text in sentences: | |
text = text.replace("\n", "").strip(" ") | |
if text == "": | |
continue | |
lang_token = lang2token[language] | |
lang = token2lang[lang_token] | |
text = lang_token + text + lang_token | |
enroll_x_lens = text_prompts.shape[-1] | |
logging.info(f"synthesize text: {text}") | |
phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip()) | |
text_tokens, text_tokens_lens = text_collater( | |
[ | |
phone_tokens | |
] | |
) | |
text_tokens = torch.cat([text_prompts, text_tokens], dim=-1) | |
text_tokens_lens += enroll_x_lens | |
# accent control | |
lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] | |
encoded_frames = model.inference( | |
text_tokens.to(device), | |
text_tokens_lens.to(device), | |
audio_prompts, | |
enroll_x_lens=enroll_x_lens, | |
top_k=-100, | |
temperature=1, | |
prompt_language=lang_pr, | |
text_language=langs if accent == "no-accent" else lang, | |
) | |
complete_tokens = torch.cat([complete_tokens, encoded_frames.transpose(2, 1)], dim=-1) | |
if torch.rand(1) < 1.0: | |
audio_prompts = encoded_frames[:, :, -NUM_QUANTIZERS:] | |
text_prompts = text_tokens[:, enroll_x_lens:] | |
else: | |
audio_prompts = original_audio_prompts | |
text_prompts = original_text_prompts | |
samples = audio_tokenizer.decode( | |
[(complete_tokens, None)] | |
) | |
model.to('cpu') | |
message = f"Cut into {len(sentences)} sentences" | |
return message, (24000, samples[0][0].cpu().numpy()) | |
else: | |
raise ValueError(f"No such mode {mode}") | |
def main(): | |
app = gr.Blocks() | |
with app: | |
gr.HTML("<center>" | |
"<h1>🌊💕🎶 VALL-E X 3秒声音克隆,支持中日英三语</h1>" | |
"</center>") | |
gr.Markdown("## <center>⚡ 只需3秒语音,快速复刻您喜欢的声音;Powered by [VALL-E-X](https://github.com/Plachtaa/VALL-E-X)</center>") | |
gr.Markdown("### <center>更多精彩应用,尽在[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕</center>") | |
with gr.Tab("🎶 - 提取音色"): | |
gr.Markdown("请上传一段3~10秒的语音,并点击”提取音色“") | |
with gr.Row(): | |
with gr.Column(): | |
textbox2 = gr.TextArea(label="Prompt name", | |
placeholder="Name your prompt here", | |
value="prompt_1", elem_id=f"prompt-name", visible=False) | |
# 添加选择语言和输入台本的地方 | |
textbox_transcript2 = gr.TextArea(label="Transcript", | |
placeholder="Write transcript here. (leave empty to use whisper)", | |
value="", elem_id=f"prompt-name", visible=False) | |
upload_audio_prompt_2 = gr.Audio(label='请在此上传您的语音文件', source='upload', interactive=True) | |
record_audio_prompt_2 = gr.Audio(label='或者用麦克风上传您喜欢的声音', source='microphone', interactive=True) | |
with gr.Column(): | |
text_output_2 = gr.Textbox(label="音色提取进度") | |
prompt_output_2 = gr.File(interactive=False, visible=False) | |
btn_2 = gr.Button("提取音色", variant="primary") | |
btn_2.click(make_npz_prompt, | |
inputs=[textbox2, upload_audio_prompt_2, record_audio_prompt_2, textbox_transcript2], | |
outputs=[text_output_2, prompt_output_2]) | |
with gr.Tab("💕 - 声音克隆"): | |
gr.Markdown("现在开始奇妙的声音克隆之旅吧!输入您想合成的文本后,点击”声音克隆“即可快速复刻喜欢的声音!") | |
with gr.Row(): | |
with gr.Column(): | |
textbox_4 = gr.TextArea(label="请输入您想合成的文本", | |
placeholder="说点什么吧(中英皆可)...", | |
elem_id=f"tts-input") | |
btn_4 = gr.Button("声音克隆", variant="primary") | |
btn_5 = gr.Button("去除噪音", variant="primary") | |
language_dropdown_4 = gr.Dropdown(choices=['auto-detect', 'English', '中文', '日本語'], value='auto-detect', | |
label='language', visible=False) | |
accent_dropdown_4 = gr.Dropdown(choices=['no-accent', 'English', '中文', '日本語'], value='no-accent', | |
label='accent', visible=False) | |
preset_dropdown_4 = gr.Dropdown(choices=preset_list, value=None, label='更多语音包', visible=False) | |
prompt_file_4 = prompt_output_2 | |
with gr.Column(): | |
text_output_4 = gr.TextArea(label="Message", visible=False) | |
audio_output_4 = gr.Audio(label="为您合成的专属语音", elem_id="tts-audio", type="filepath", interactive=False) | |
radio = gr.Radio( | |
["mic", "file"], value="file", label="How would you like to upload your audio?", visible=False | |
) | |
mic_input = gr.Mic(label="Input", type="filepath", visible=False) | |
audio_file = audio_output_4 | |
inputs1 = [ | |
audio_file, | |
gr.Dropdown( | |
label="Add background noise", | |
choices=list(NOISES.keys()), | |
value="None", | |
visible=False, | |
), | |
gr.Dropdown( | |
label="Noise Level (SNR)", | |
choices=["-5", "0", "10", "20"], | |
value="0", | |
visible=False, | |
), | |
mic_input, | |
] | |
outputs1 = [ | |
gr.Audio(type="filepath", label="Noisy audio", visible=False), | |
gr.Image(label="Noisy spectrogram", visible=False), | |
gr.Audio(type="filepath", label="降噪后的专属语音"), | |
gr.Image(label="Enhanced spectrogram", visible=False), | |
] | |
btn_4.click(infer_long_text, | |
inputs=[textbox_4, preset_dropdown_4, prompt_file_4, language_dropdown_4, accent_dropdown_4], | |
outputs=[text_output_4, audio_output_4]) | |
btn_5.click(fn=demo_fn, inputs=inputs1, outputs=outputs1) | |
gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。</center>") | |
gr.Markdown("<center>🧸 - 如何使用此程序:在“提取音色”模块上传一段语音并提取音色之后,就可以在“声音克隆”模块一键克隆您喜欢的声音啦!</center>") | |
gr.HTML(''' | |
<div class="footer"> | |
<p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘 | |
</p> | |
</div> | |
''') | |
app.launch(show_error=True) | |
if __name__ == "__main__": | |
formatter = ( | |
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" | |
) | |
logging.basicConfig(format=formatter, level=logging.INFO) | |
main() |