Spaces:
Sleeping
Sleeping
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,359 +1,13 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
[](https://github.com/RVC-Boss/GPT-SoVITS/blob/main/LICENSE)
|
| 12 |
-
[](https://huggingface.co/lj1995/GPT-SoVITS/tree/main)
|
| 13 |
-
[](https://discord.gg/dnrgs5GHfG)
|
| 14 |
-
|
| 15 |
-
**English** | [**中文简体**](./docs/cn/README.md) | [**日本語**](./docs/ja/README.md) | [**한국어**](./docs/ko/README.md) | [**Türkçe**](./docs/tr/README.md)
|
| 16 |
-
|
| 17 |
-
</div>
|
| 18 |
-
|
| 19 |
---
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
1. **Zero-shot TTS:** Input a 5-second vocal sample and experience instant text-to-speech conversion.
|
| 24 |
-
|
| 25 |
-
2. **Few-shot TTS:** Fine-tune the model with just 1 minute of training data for improved voice similarity and realism.
|
| 26 |
-
|
| 27 |
-
3. **Cross-lingual Support:** Inference in languages different from the training dataset, currently supporting English, Japanese, and Chinese.
|
| 28 |
-
|
| 29 |
-
4. **WebUI Tools:** Integrated tools include voice accompaniment separation, automatic training set segmentation, Chinese ASR, and text labeling, assisting beginners in creating training datasets and GPT/SoVITS models.
|
| 30 |
-
|
| 31 |
-
**Check out our [demo video](https://www.bilibili.com/video/BV12g4y1m7Uw) here!**
|
| 32 |
-
|
| 33 |
-
Unseen speakers few-shot fine-tuning demo:
|
| 34 |
-
|
| 35 |
-
https://github.com/RVC-Boss/GPT-SoVITS/assets/129054828/05bee1fa-bdd8-4d85-9350-80c060ab47fb
|
| 36 |
-
|
| 37 |
-
**User guide: [简体中文](https://www.yuque.com/baicaigongchang1145haoyuangong/ib3g1e) | [English](https://rentry.co/GPT-SoVITS-guide#/)**
|
| 38 |
-
|
| 39 |
-
## Installation
|
| 40 |
-
|
| 41 |
-
For users in the China region, you can [click here](https://www.codewithgpu.com/i/RVC-Boss/GPT-SoVITS/GPT-SoVITS-Official) to use AutoDL Cloud Docker to experience the full functionality online.
|
| 42 |
-
|
| 43 |
-
### Tested Environments
|
| 44 |
-
|
| 45 |
-
- Python 3.9, PyTorch 2.0.1, CUDA 11
|
| 46 |
-
- Python 3.10.13, PyTorch 2.1.2, CUDA 12.3
|
| 47 |
-
- Python 3.9, PyTorch 2.2.2, macOS 14.4.1 (Apple silicon)
|
| 48 |
-
- Python 3.9, PyTorch 2.2.2, CPU devices
|
| 49 |
-
|
| 50 |
-
_Note: numba==0.56.4 requires py<3.11_
|
| 51 |
-
|
| 52 |
-
### Windows
|
| 53 |
-
|
| 54 |
-
If you are a Windows user (tested with win>=10), you can [download the integrated package](https://huggingface.co/lj1995/GPT-SoVITS-windows-package/resolve/main/GPT-SoVITS-beta.7z?download=true) and double-click on _go-webui.bat_ to start GPT-SoVITS-WebUI.
|
| 55 |
-
|
| 56 |
-
Users in the China region can [download the package](https://www.icloud.com.cn/iclouddrive/030K8WjGJ9xMXhpzJVIMEWPzQ#GPT-SoVITS-beta0706fix1) by clicking the link and then selecting "Download a copy." (Log out if you encounter errors while downloading.)
|
| 57 |
-
|
| 58 |
-
### Linux
|
| 59 |
-
|
| 60 |
-
```bash
|
| 61 |
-
conda create -n GPTSoVits python=3.9
|
| 62 |
-
conda activate GPTSoVits
|
| 63 |
-
bash install.sh
|
| 64 |
-
```
|
| 65 |
-
|
| 66 |
-
### macOS
|
| 67 |
-
|
| 68 |
-
**Note: The models trained with GPUs on Macs result in significantly lower quality compared to those trained on other devices, so we are temporarily using CPUs instead.**
|
| 69 |
-
|
| 70 |
-
1. Install Xcode command-line tools by running `xcode-select --install`.
|
| 71 |
-
2. Install FFmpeg by running `brew install ffmpeg`.
|
| 72 |
-
3. Install the program by running the following commands:
|
| 73 |
-
|
| 74 |
-
```bash
|
| 75 |
-
conda create -n GPTSoVits python=3.9
|
| 76 |
-
conda activate GPTSoVits
|
| 77 |
-
pip install -r requirements.txt
|
| 78 |
-
```
|
| 79 |
-
|
| 80 |
-
### Install Manually
|
| 81 |
-
|
| 82 |
-
#### Install FFmpeg
|
| 83 |
-
|
| 84 |
-
##### Conda Users
|
| 85 |
-
|
| 86 |
-
```bash
|
| 87 |
-
conda install ffmpeg
|
| 88 |
-
```
|
| 89 |
-
|
| 90 |
-
##### Ubuntu/Debian Users
|
| 91 |
-
|
| 92 |
-
```bash
|
| 93 |
-
sudo apt install ffmpeg
|
| 94 |
-
sudo apt install libsox-dev
|
| 95 |
-
conda install -c conda-forge 'ffmpeg<7'
|
| 96 |
-
```
|
| 97 |
-
|
| 98 |
-
##### Windows Users
|
| 99 |
-
|
| 100 |
-
Download and place [ffmpeg.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe) and [ffprobe.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe) in the GPT-SoVITS root.
|
| 101 |
-
|
| 102 |
-
Install [Visual Studio 2022](https://visualstudio.microsoft.com/downloads/) (Korean TTS Only)
|
| 103 |
-
|
| 104 |
-
##### MacOS Users
|
| 105 |
-
```bash
|
| 106 |
-
brew install ffmpeg
|
| 107 |
-
```
|
| 108 |
-
|
| 109 |
-
#### Install Dependences
|
| 110 |
-
|
| 111 |
-
```bash
|
| 112 |
-
pip install -r requirements.txt
|
| 113 |
-
```
|
| 114 |
-
|
| 115 |
-
### Using Docker
|
| 116 |
-
|
| 117 |
-
#### docker-compose.yaml configuration
|
| 118 |
-
|
| 119 |
-
0. Regarding image tags: Due to rapid updates in the codebase and the slow process of packaging and testing images, please check [Docker Hub](https://hub.docker.com/r/breakstring/gpt-sovits) for the currently packaged latest images and select as per your situation, or alternatively, build locally using a Dockerfile according to your own needs.
|
| 120 |
-
1. Environment Variables:
|
| 121 |
-
|
| 122 |
-
- is_half: Controls half-precision/double-precision. This is typically the cause if the content under the directories 4-cnhubert/5-wav32k is not generated correctly during the "SSL extracting" step. Adjust to True or False based on your actual situation.
|
| 123 |
-
|
| 124 |
-
2. Volumes Configuration,The application's root directory inside the container is set to /workspace. The default docker-compose.yaml lists some practical examples for uploading/downloading content.
|
| 125 |
-
3. shm_size: The default available memory for Docker Desktop on Windows is too small, which can cause abnormal operations. Adjust according to your own situation.
|
| 126 |
-
4. Under the deploy section, GPU-related settings should be adjusted cautiously according to your system and actual circumstances.
|
| 127 |
-
|
| 128 |
-
#### Running with docker compose
|
| 129 |
-
|
| 130 |
-
```
|
| 131 |
-
docker compose -f "docker-compose.yaml" up -d
|
| 132 |
-
```
|
| 133 |
-
|
| 134 |
-
#### Running with docker command
|
| 135 |
-
|
| 136 |
-
As above, modify the corresponding parameters based on your actual situation, then run the following command:
|
| 137 |
-
|
| 138 |
-
```
|
| 139 |
-
docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-DockerTest\output:/workspace/output --volume=G:\GPT-SoVITS-DockerTest\logs:/workspace/logs --volume=G:\GPT-SoVITS-DockerTest\SoVITS_weights:/workspace/SoVITS_weights --workdir=/workspace -p 9880:9880 -p 9871:9871 -p 9872:9872 -p 9873:9873 -p 9874:9874 --shm-size="16G" -d breakstring/gpt-sovits:xxxxx
|
| 140 |
-
```
|
| 141 |
-
|
| 142 |
-
## Pretrained Models
|
| 143 |
-
|
| 144 |
-
Download pretrained models from [GPT-SoVITS Models](https://huggingface.co/lj1995/GPT-SoVITS) and place them in `GPT_SoVITS/pretrained_models`.
|
| 145 |
-
|
| 146 |
-
Download G2PW models from [G2PWModel-v2-onnx.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/g2p/G2PWModel_1.1.zip), unzip and rename to `G2PWModel`, and then place them in `GPT_SoVITS\text`.(Chinese TTS Only)
|
| 147 |
-
|
| 148 |
-
For UVR5 (Vocals/Accompaniment Separation & Reverberation Removal, additionally), download models from [UVR5 Weights](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/uvr5_weights) and place them in `tools/uvr5/uvr5_weights`.
|
| 149 |
-
|
| 150 |
-
Users in the China region can download these two models by entering the links below and clicking "Download a copy" (Log out if you encounter errors while downloading.)
|
| 151 |
-
|
| 152 |
-
- [GPT-SoVITS Models](https://www.icloud.com/iclouddrive/044boFMiOHHt22SNr-c-tirbA#pretrained_models)
|
| 153 |
-
|
| 154 |
-
- [UVR5 Weights](https://www.icloud.com.cn/iclouddrive/0bekRKDiJXboFhbfm3lM2fVbA#UVR5_Weights)
|
| 155 |
-
|
| 156 |
-
- [G2PWModel_1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/g2p/G2PWModel_1.1.zip)(Download G2PW models, unzip and rename to `G2PWModel`, and then place them in `GPT_SoVITS\text`.
|
| 157 |
-
|
| 158 |
-
For Chinese ASR (additionally), download models from [Damo ASR Model](https://modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/files), [Damo VAD Model](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/files), and [Damo Punc Model](https://modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/files) and place them in `tools/asr/models`.
|
| 159 |
-
|
| 160 |
-
Or Download FunASR Model from [FunASR Model](https://www.icloud.com/iclouddrive/0b52_7SQWYr75kHkPoPXgpeQA#models), unzip and replace `tools/asr/models`.(Log out if you encounter errors while downloading.)
|
| 161 |
-
|
| 162 |
-
For English or Japanese ASR (additionally), download models from [Faster Whisper Large V3](https://huggingface.co/Systran/faster-whisper-large-v3) and place them in `tools/asr/models`. Also, [other models](https://huggingface.co/Systran) may have the similar effect with smaller disk footprint.
|
| 163 |
-
|
| 164 |
-
Users in the China region can download this model by entering the links below
|
| 165 |
-
|
| 166 |
-
- [Faster Whisper Large V3](https://www.icloud.com/iclouddrive/00bUEp9_mcjMq_dhHu_vrAFDQ#faster-whisper-large-v3) (Click "Download a copy", log out if you encounter errors while downloading.)
|
| 167 |
-
|
| 168 |
-
- [Faster Whisper Large V3](https://hf-mirror.com/Systran/faster-whisper-large-v3) (HuggingFace mirror site)
|
| 169 |
-
|
| 170 |
-
## Dataset Format
|
| 171 |
-
|
| 172 |
-
The TTS annotation .list file format:
|
| 173 |
-
|
| 174 |
-
```
|
| 175 |
-
vocal_path|speaker_name|language|text
|
| 176 |
-
```
|
| 177 |
-
|
| 178 |
-
Language dictionary:
|
| 179 |
-
|
| 180 |
-
- 'zh': Chinese
|
| 181 |
-
- 'ja': Japanese
|
| 182 |
-
- 'en': English
|
| 183 |
-
- 'ko': Korean
|
| 184 |
-
- 'yue': Cantonese
|
| 185 |
-
|
| 186 |
-
Example:
|
| 187 |
-
|
| 188 |
-
```
|
| 189 |
-
D:\GPT-SoVITS\xxx/xxx.wav|xxx|en|I like playing Genshin.
|
| 190 |
-
```
|
| 191 |
-
|
| 192 |
-
## Finetune and inference
|
| 193 |
-
|
| 194 |
-
### Open WebUI
|
| 195 |
-
|
| 196 |
-
#### Integrated Package Users
|
| 197 |
-
|
| 198 |
-
Double-click `go-webui.bat`or use `go-webui.ps`
|
| 199 |
-
if you want to switch to V1,then double-click`go-webui-v1.bat` or use `go-webui-v1.ps`
|
| 200 |
-
|
| 201 |
-
#### Others
|
| 202 |
-
|
| 203 |
-
```bash
|
| 204 |
-
python webui.py <language(optional)>
|
| 205 |
-
```
|
| 206 |
-
|
| 207 |
-
if you want to switch to V1,then
|
| 208 |
-
|
| 209 |
-
```bash
|
| 210 |
-
python webui.py v1 <language(optional)>
|
| 211 |
-
```
|
| 212 |
-
Or maunally switch version in WebUI
|
| 213 |
-
|
| 214 |
-
### Finetune
|
| 215 |
-
|
| 216 |
-
#### Path Auto-filling is now supported
|
| 217 |
-
|
| 218 |
-
1.Fill in the audio path
|
| 219 |
-
|
| 220 |
-
2.Slice the audio into small chunks
|
| 221 |
-
|
| 222 |
-
3.Denoise(optinal)
|
| 223 |
-
|
| 224 |
-
4.ASR
|
| 225 |
-
|
| 226 |
-
5.Proofreading ASR transcriptions
|
| 227 |
-
|
| 228 |
-
6.Go to the next Tab, then finetune the model
|
| 229 |
-
|
| 230 |
-
### Open Inference WebUI
|
| 231 |
-
|
| 232 |
-
#### Integrated Package Users
|
| 233 |
-
|
| 234 |
-
Double-click `go-webui-v2.bat` or use `go-webui-v2.ps` ,then open the inference webui at `1-GPT-SoVITS-TTS/1C-inference`
|
| 235 |
-
|
| 236 |
-
#### Others
|
| 237 |
-
|
| 238 |
-
```bash
|
| 239 |
-
python GPT_SoVITS/inference_webui.py <language(optional)>
|
| 240 |
-
```
|
| 241 |
-
OR
|
| 242 |
-
|
| 243 |
-
```bash
|
| 244 |
-
python webui.py
|
| 245 |
-
```
|
| 246 |
-
then open the inference webui at `1-GPT-SoVITS-TTS/1C-inference`
|
| 247 |
-
|
| 248 |
-
## V2 Release Notes
|
| 249 |
-
|
| 250 |
-
New Features:
|
| 251 |
-
|
| 252 |
-
1.Support Korean and Cantonese
|
| 253 |
-
|
| 254 |
-
2.An optimized text frontend
|
| 255 |
-
|
| 256 |
-
3.Pre-trained model extended from 2k hours to 5k hours
|
| 257 |
-
|
| 258 |
-
4.Improved synthesis quality for low-quality reference audio
|
| 259 |
-
|
| 260 |
-
[more details](https://github.com/RVC-Boss/GPT-SoVITS/wiki/GPT%E2%80%90SoVITS%E2%80%90v2%E2%80%90features-(%E6%96%B0%E7%89%B9%E6%80%A7) )
|
| 261 |
-
|
| 262 |
-
Use v2 from v1 environment:
|
| 263 |
-
|
| 264 |
-
1.pip install -r requirements.txt to update some packages
|
| 265 |
-
|
| 266 |
-
2.clone the latest codes from github
|
| 267 |
-
|
| 268 |
-
3.download v2 pretrained models from [huggingface](https://huggingface.co/lj1995/GPT-SoVITS/tree/main/gsv-v2final-pretrained) and put them into GPT_SoVITS\pretrained_models\gsv-v2final-pretrained
|
| 269 |
-
|
| 270 |
-
Chinese v2 additional: [G2PWModel_1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/g2p/G2PWModel_1.1.zip)(Download G2PW models, unzip and rename to `G2PWModel`, and then place them in `GPT_SoVITS\text`.
|
| 271 |
-
|
| 272 |
-
## Todo List
|
| 273 |
-
|
| 274 |
-
- [x] **High Priority:**
|
| 275 |
-
|
| 276 |
-
- [x] Localization in Japanese and English.
|
| 277 |
-
- [x] User guide.
|
| 278 |
-
- [x] Japanese and English dataset fine tune training.
|
| 279 |
-
|
| 280 |
-
- [ ] **Features:**
|
| 281 |
-
- [x] Zero-shot voice conversion (5s) / few-shot voice conversion (1min).
|
| 282 |
-
- [x] TTS speaking speed control.
|
| 283 |
-
- [ ] ~~Enhanced TTS emotion control.~~
|
| 284 |
-
- [ ] Experiment with changing SoVITS token inputs to probability distribution of GPT vocabs (transformer latent).
|
| 285 |
-
- [x] Improve English and Japanese text frontend.
|
| 286 |
-
- [ ] Develop tiny and larger-sized TTS models.
|
| 287 |
-
- [x] Colab scripts.
|
| 288 |
-
- [ ] Try expand training dataset (2k hours -> 10k hours).
|
| 289 |
-
- [x] better sovits base model (enhanced audio quality)
|
| 290 |
-
- [ ] model mix
|
| 291 |
-
|
| 292 |
-
## (Additional) Method for running from the command line
|
| 293 |
-
Use the command line to open the WebUI for UVR5
|
| 294 |
-
```
|
| 295 |
-
python tools/uvr5/webui.py "<infer_device>" <is_half> <webui_port_uvr5>
|
| 296 |
-
```
|
| 297 |
-
<!-- If you can't open a browser, follow the format below for UVR processing,This is using mdxnet for audio processing
|
| 298 |
-
```
|
| 299 |
-
python mdxnet.py --model --input_root --output_vocal --output_ins --agg_level --format --device --is_half_precision
|
| 300 |
-
``` -->
|
| 301 |
-
This is how the audio segmentation of the dataset is done using the command line
|
| 302 |
-
```
|
| 303 |
-
python audio_slicer.py \
|
| 304 |
-
--input_path "<path_to_original_audio_file_or_directory>" \
|
| 305 |
-
--output_root "<directory_where_subdivided_audio_clips_will_be_saved>" \
|
| 306 |
-
--threshold <volume_threshold> \
|
| 307 |
-
--min_length <minimum_duration_of_each_subclip> \
|
| 308 |
-
--min_interval <shortest_time_gap_between_adjacent_subclips>
|
| 309 |
-
--hop_size <step_size_for_computing_volume_curve>
|
| 310 |
-
```
|
| 311 |
-
This is how dataset ASR processing is done using the command line(Only Chinese)
|
| 312 |
-
```
|
| 313 |
-
python tools/asr/funasr_asr.py -i <input> -o <output>
|
| 314 |
-
```
|
| 315 |
-
ASR processing is performed through Faster_Whisper(ASR marking except Chinese)
|
| 316 |
-
|
| 317 |
-
(No progress bars, GPU performance may cause time delays)
|
| 318 |
-
```
|
| 319 |
-
python ./tools/asr/fasterwhisper_asr.py -i <input> -o <output> -l <language> -p <precision>
|
| 320 |
-
```
|
| 321 |
-
A custom list save path is enabled
|
| 322 |
-
|
| 323 |
-
## Credits
|
| 324 |
-
|
| 325 |
-
Special thanks to the following projects and contributors:
|
| 326 |
-
|
| 327 |
-
### Theoretical Research
|
| 328 |
-
- [ar-vits](https://github.com/innnky/ar-vits)
|
| 329 |
-
- [SoundStorm](https://github.com/yangdongchao/SoundStorm/tree/master/soundstorm/s1/AR)
|
| 330 |
-
- [vits](https://github.com/jaywalnut310/vits)
|
| 331 |
-
- [TransferTTS](https://github.com/hcy71o/TransferTTS/blob/master/models.py#L556)
|
| 332 |
-
- [contentvec](https://github.com/auspicious3000/contentvec/)
|
| 333 |
-
- [hifi-gan](https://github.com/jik876/hifi-gan)
|
| 334 |
-
- [fish-speech](https://github.com/fishaudio/fish-speech/blob/main/tools/llama/generate.py#L41)
|
| 335 |
-
### Pretrained Models
|
| 336 |
-
- [Chinese Speech Pretrain](https://github.com/TencentGameMate/chinese_speech_pretrain)
|
| 337 |
-
- [Chinese-Roberta-WWM-Ext-Large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large)
|
| 338 |
-
### Text Frontend for Inference
|
| 339 |
-
- [paddlespeech zh_normalization](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/paddlespeech/t2s/frontend/zh_normalization)
|
| 340 |
-
- [LangSegment](https://github.com/juntaosun/LangSegment)
|
| 341 |
-
- [g2pW](https://github.com/GitYCC/g2pW)
|
| 342 |
-
- [pypinyin-g2pW](https://github.com/mozillazg/pypinyin-g2pW)
|
| 343 |
-
- [paddlespeech g2pw](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/paddlespeech/t2s/frontend/g2pw)
|
| 344 |
-
### WebUI Tools
|
| 345 |
-
- [ultimatevocalremovergui](https://github.com/Anjok07/ultimatevocalremovergui)
|
| 346 |
-
- [audio-slicer](https://github.com/openvpi/audio-slicer)
|
| 347 |
-
- [SubFix](https://github.com/cronrpc/SubFix)
|
| 348 |
-
- [FFmpeg](https://github.com/FFmpeg/FFmpeg)
|
| 349 |
-
- [gradio](https://github.com/gradio-app/gradio)
|
| 350 |
-
- [faster-whisper](https://github.com/SYSTRAN/faster-whisper)
|
| 351 |
-
- [FunASR](https://github.com/alibaba-damo-academy/FunASR)
|
| 352 |
-
|
| 353 |
-
Thankful to @Naozumi520 for providing the Cantonese training set and for the guidance on Cantonese-related knowledge.
|
| 354 |
-
|
| 355 |
-
## Thanks to all contributors for their efforts
|
| 356 |
-
|
| 357 |
-
<a href="https://github.com/RVC-Boss/GPT-SoVITS/graphs/contributors" target="_blank">
|
| 358 |
-
<img src="https://contrib.rocks/image?repo=RVC-Boss/GPT-SoVITS" />
|
| 359 |
-
</a>
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: GPT SoVITS V2
|
| 3 |
+
emoji: 🐨
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: indigo
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.40.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|