Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	File size: 3,827 Bytes
			
			a660631 d5479f6 06d6d46 a660631 84448a9 a660631 84448a9 a660631 d5479f6 a660631 06d6d46 a660631 06d6d46 a660631 208f8fb a660631 ae34a8d 3c4344e a660631 3c4344e a660631 ae34a8d 3c4344e a660631 043bac9 a660631  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102  | 
								#!/usr/bin/env python
import gradio as gr
from settings import (DEFAULT_IMAGE_RESOLUTION, DEFAULT_NUM_IMAGES,
                      MAX_IMAGE_RESOLUTION, MAX_NUM_IMAGES, MAX_SEED)
from utils import randomize_seed_fn
def create_demo(process):
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                image = gr.Image()
                prompt = gr.Textbox(label='Prompt')
                run_button = gr.Button('Run')
                with gr.Accordion('Advanced options', open=False):
                    num_samples = gr.Slider(label='Number of images',
                                            minimum=1,
                                            maximum=MAX_NUM_IMAGES,
                                            value=DEFAULT_NUM_IMAGES,
                                            step=1)
                    image_resolution = gr.Slider(
                        label='Image resolution',
                        minimum=256,
                        maximum=MAX_IMAGE_RESOLUTION,
                        value=DEFAULT_IMAGE_RESOLUTION,
                        step=256)
                    num_steps = gr.Slider(label='Number of steps',
                                          minimum=1,
                                          maximum=100,
                                          value=20,
                                          step=1)
                    guidance_scale = gr.Slider(label='Guidance scale',
                                               minimum=0.1,
                                               maximum=30.0,
                                               value=9.0,
                                               step=0.1)
                    seed = gr.Slider(label='Seed',
                                     minimum=0,
                                     maximum=MAX_SEED,
                                     step=1,
                                     value=0)
                    randomize_seed = gr.Checkbox(label='Randomize seed',
                                                 value=True)
                    a_prompt = gr.Textbox(
                        label='Additional prompt',
                        value='best quality, extremely detailed')
                    n_prompt = gr.Textbox(
                        label='Negative prompt',
                        value=
                        'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
                    )
            with gr.Column():
                result = gr.Gallery(label='Output',
                                    show_label=False,
                                    columns=2,
                                    object_fit='scale-down')
        inputs = [
            image,
            prompt,
            a_prompt,
            n_prompt,
            num_samples,
            image_resolution,
            num_steps,
            guidance_scale,
            seed,
        ]
        prompt.submit(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            queue=False,
            api_name=False,
        ).then(
            fn=process,
            inputs=inputs,
            outputs=result,
            api_name=False,
        )
        run_button.click(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            queue=False,
            api_name=False,
        ).then(
            fn=process,
            inputs=inputs,
            outputs=result,
            api_name='ip2p',
        )
    return demo
if __name__ == '__main__':
    from model import Model
    model = Model(task_name='ip2p')
    demo = create_demo(model.process_ip2p)
    demo.queue().launch()
 |