fine tune LLM
Browse files- app.py +53 -30
- banks_txt_like.pkl +3 -0
- requirements.txt +2 -1
app.py
CHANGED
@@ -2,11 +2,6 @@ import gradio as gr
|
|
2 |
# from langchain.vectorstores import Chroma
|
3 |
|
4 |
|
5 |
-
import chromadb
|
6 |
-
client = chromadb.PersistentClient(path="chroma.db")
|
7 |
-
|
8 |
-
db = client.get_collection(name="banks")
|
9 |
-
|
10 |
'''
|
11 |
https://huggingface.co/spaces/kevinhug/clientX
|
12 |
|
@@ -17,31 +12,53 @@ counter="""
|
|
17 |
<div class="elfsight-app-5f3e8eb9-9103-490e-9999-e20aa4157dc7" data-elfsight-app-lazy></div>
|
18 |
"""
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def similar(issue):
|
21 |
global db
|
22 |
docs = db.query(query_texts=issue, n_results=5)
|
23 |
return docs
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
'''
|
27 |
https://www.gradio.app/docs/interface
|
28 |
'''
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
36 |
Data Scientist: Kevin Wong, [email protected], 416-903-7937
|
37 |
-
|
38 |
-
|
39 |
https://www.kaggle.com/datasets/trainingdatapro/20000-customers-reviews-on-banks/?select=Banks.csv
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
Description:
|
46 |
=======
|
47 |
In today's dynamic financial landscape, the Semantic Similarity Document Search (SSDS) capability is a practical innovation to improve client experience, marketing leads, and sentiment analysis. As a Data Scientist with a decades in the financial industry, I see the value of SSDS in action.
|
@@ -71,15 +88,21 @@ With no need for jargon, SSDS delivers tangible value to our fintech operations.
|
|
71 |
### issue:
|
72 |
- upset customer
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
iface2 = gr.Interface(fn=similar, inputs="text", outputs="json",
|
84 |
-
title="testing")
|
85 |
-
iface.launch()
|
|
|
2 |
# from langchain.vectorstores import Chroma
|
3 |
|
4 |
|
|
|
|
|
|
|
|
|
|
|
5 |
'''
|
6 |
https://huggingface.co/spaces/kevinhug/clientX
|
7 |
|
|
|
12 |
<div class="elfsight-app-5f3e8eb9-9103-490e-9999-e20aa4157dc7" data-elfsight-app-lazy></div>
|
13 |
"""
|
14 |
|
15 |
+
'''
|
16 |
+
SIMILAR VECTOR DB SEARCH
|
17 |
+
'''
|
18 |
+
import chromadb
|
19 |
+
client = chromadb.PersistentClient(path="chroma.db")
|
20 |
+
|
21 |
+
db = client.get_collection(name="banks")
|
22 |
+
|
23 |
def similar(issue):
|
24 |
global db
|
25 |
docs = db.query(query_texts=issue, n_results=5)
|
26 |
return docs
|
27 |
|
28 |
+
'''
|
29 |
+
FINE TUNE LLM LIKE SCORE
|
30 |
+
'''
|
31 |
+
from fastai.vision.all import *
|
32 |
+
learn = load_learner('banks_txt_like.pkl')
|
33 |
+
def like(issue):
|
34 |
+
pred,idx,probs = learn.predict(issue)
|
35 |
+
return pred
|
36 |
'''
|
37 |
https://www.gradio.app/docs/interface
|
38 |
'''
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
with gr.Blocks() as demo:
|
44 |
+
gr.Markdown("""Enhancing Customer Engagement and Operational Efficiency with NLP
|
45 |
+
=========
|
46 |
+
LLM
|
47 |
+
Semantic Similarity Document Search (SSDS)
|
48 |
+
|
49 |
Data Scientist: Kevin Wong, [email protected], 416-903-7937
|
50 |
+
|
51 |
+
Open source ml bank dataset
|
52 |
https://www.kaggle.com/datasets/trainingdatapro/20000-customers-reviews-on-banks/?select=Banks.csv
|
53 |
+
""")
|
54 |
+
with gr.Tab("Semantic Similarity Document Search (SSDS)"):
|
55 |
+
in_similar = gr.Textbox(placeholder="having credit card problem")
|
56 |
+
out_similar = gr.JSON()
|
57 |
|
58 |
+
btn_similar = gr.Button("Find Similar Verbatim")
|
59 |
+
btn_similar.click(fn=similar, inputs=in_similar, outputs=out_similar)
|
60 |
+
|
61 |
+
gr.Markdown("""
|
62 |
Description:
|
63 |
=======
|
64 |
In today's dynamic financial landscape, the Semantic Similarity Document Search (SSDS) capability is a practical innovation to improve client experience, marketing leads, and sentiment analysis. As a Data Scientist with a decades in the financial industry, I see the value of SSDS in action.
|
|
|
88 |
### issue:
|
89 |
- upset customer
|
90 |
|
91 |
+
Using Sentence Embedding to inject Public ML Banks Text Dataset @ https://github.com/kevinwkc/analytics/blob/master/ai/vectorDB.py
|
92 |
+
""")
|
93 |
+
|
94 |
+
with gr.Tab("Fine Tune LLM")
|
95 |
+
in_like = gr.Textbox(placeholder="having credit card problem")
|
96 |
+
out_like = gr.Textbox(placeholder="like score")
|
97 |
+
|
98 |
+
btn_like = gr.Button("Find Like Score")
|
99 |
+
btn_like.click(fn=like, inputs=in_like, outputs=out_like)
|
100 |
+
|
101 |
+
|
102 |
+
with gr.Accordion("Future Improvement"):
|
103 |
+
gr.Markdown("""
|
104 |
+
tuning the distance for use case
|
105 |
+
""")
|
106 |
+
|
107 |
+
demo.launch()
|
108 |
|
|
|
|
|
|
banks_txt_like.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3e0db2b1e176931dde3f5172bb57aac30df4fe3521b80dbf330be74f0dde368
|
3 |
+
size 130662474
|
requirements.txt
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
chromadb
|
|
|
|
1 |
+
chromadb
|
2 |
+
fastai
|