File size: 791 Bytes
f1d6020 daa55b3 f1d6020 daa55b3 f1d6020 daa55b3 f1d6020 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import gradio as gr
# from langchain.vectorstores import Chroma
import chromadb
client = chromadb.PersistentClient(path="chroma.db")
db = client.get_collection(name="banks")
def greet(issue):
global db
docs = db.query(query_texts=issue, n_results=5)
return docs
iface = gr.Interface(fn=greet, inputs="text", outputs="text", title="Leads Generation", description="""Using Sentence Embedding to inject Public ML Banks Text Dataset @ https://github.com/kevinwkc/analytics/blob/master/ai/vectorDB.py""",
article="""
put in the issue regarding service, sales, point of failure, product, trend to find out what customer talking about
some ideas
----------
having bad client experience
having credit card problem
late payment fee
credit score dropping
""")
iface.launch() |