Spaces:
Runtime error
Runtime error
Commit
·
307beef
1
Parent(s):
853c33d
Upload 7 files
Browse files- README.md +8 -10
- app.py +177 -0
- cls_models.txt +2 -0
- det_models.txt +8 -0
- requirements.txt +2 -0
- seg_models.txt +3 -0
- utils.py +14 -0
README.md
CHANGED
|
@@ -1,13 +1,11 @@
|
|
| 1 |
---
|
| 2 |
-
title: Awesome
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
app_file: app.py
|
| 9 |
-
pinned:
|
| 10 |
-
license:
|
| 11 |
-
---
|
| 12 |
-
|
| 13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Awesome YOLOv8 Models
|
| 3 |
+
emoji: 💯
|
| 4 |
+
colorFrom: green
|
| 5 |
+
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.17.1
|
| 8 |
app_file: app.py
|
| 9 |
+
pinned: true
|
| 10 |
+
license: mit
|
| 11 |
+
---
|
|
|
|
|
|
app.py
ADDED
|
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from datasets import load_dataset
|
| 5 |
+
from ultralyticsplus import YOLO, render_result, postprocess_classify_output
|
| 6 |
+
|
| 7 |
+
from utils import load_models_from_txt_files
|
| 8 |
+
|
| 9 |
+
EXAMPLE_IMAGE_DIR = 'example_images'
|
| 10 |
+
|
| 11 |
+
DEFAULT_DET_MODEL_ID = 'keremberke/yolov8m-valorant-detection'
|
| 12 |
+
DEFAULT_DET_DATASET_ID = 'keremberke/valorant-object-detection'
|
| 13 |
+
DEFAULT_SEG_MODEL_ID = 'keremberke/yolov8s-building-segmentation'
|
| 14 |
+
DEFAULT_SEG_DATASET_ID = 'keremberke/satellite-building-segmentation'
|
| 15 |
+
DEFAULT_CLS_MODEL_ID = 'keremberke/yolov8m-chest-xray-classification'
|
| 16 |
+
DEFAULT_CLS_DATASET_ID = 'keremberke/chest-xray-classification'
|
| 17 |
+
|
| 18 |
+
# load model ids and default models
|
| 19 |
+
det_model_ids, seg_model_ids, cls_model_ids = load_models_from_txt_files()
|
| 20 |
+
det_model = YOLO(DEFAULT_DET_MODEL_ID)
|
| 21 |
+
det_model_id = DEFAULT_DET_MODEL_ID
|
| 22 |
+
seg_model = YOLO(DEFAULT_SEG_MODEL_ID)
|
| 23 |
+
seg_model_id = DEFAULT_SEG_MODEL_ID
|
| 24 |
+
cls_model = YOLO(DEFAULT_CLS_MODEL_ID)
|
| 25 |
+
cls_model_id = DEFAULT_CLS_MODEL_ID
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def get_examples(model_id, dataset_id, task):
|
| 29 |
+
examples = []
|
| 30 |
+
ds = load_dataset(dataset_id, name="mini")["validation"]
|
| 31 |
+
Path(EXAMPLE_IMAGE_DIR).mkdir(parents=True, exist_ok=True)
|
| 32 |
+
for ind in range(min(5, len(ds))):
|
| 33 |
+
jpeg_image_file = ds[ind]["image"]
|
| 34 |
+
image_file_path = str(Path(EXAMPLE_IMAGE_DIR) / f"{task}_example_{ind}.jpg")
|
| 35 |
+
jpeg_image_file.save(image_file_path, format='JPEG', quality=100)
|
| 36 |
+
image_path = os.path.abspath(image_file_path)
|
| 37 |
+
examples.append([image_path, model_id, 0.25])
|
| 38 |
+
return examples
|
| 39 |
+
|
| 40 |
+
# load default examples using default datasets
|
| 41 |
+
det_examples = get_examples(DEFAULT_DET_MODEL_ID, DEFAULT_DET_DATASET_ID, 'detect')
|
| 42 |
+
seg_examples = get_examples(DEFAULT_SEG_MODEL_ID, DEFAULT_SEG_DATASET_ID, 'segment')
|
| 43 |
+
cls_examples = get_examples(DEFAULT_CLS_MODEL_ID, DEFAULT_CLS_DATASET_ID, 'classification')
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def predict(image, model_id, threshold):
|
| 47 |
+
"""Perform inference on image."""
|
| 48 |
+
# set task
|
| 49 |
+
if model_id in det_model_ids:
|
| 50 |
+
task = 'detect'
|
| 51 |
+
elif model_id in seg_model_ids:
|
| 52 |
+
task = 'segment'
|
| 53 |
+
elif model_id in cls_model_ids:
|
| 54 |
+
task = 'classify'
|
| 55 |
+
else:
|
| 56 |
+
raise ValueError(f"Invalid model_id: {model_id}")
|
| 57 |
+
|
| 58 |
+
# set model
|
| 59 |
+
if task == 'detect':
|
| 60 |
+
global det_model
|
| 61 |
+
global det_model_id
|
| 62 |
+
if model_id != det_model_id:
|
| 63 |
+
det_model = YOLO(model_id)
|
| 64 |
+
det_model_id = model_id
|
| 65 |
+
model = det_model
|
| 66 |
+
elif task == 'segment':
|
| 67 |
+
global seg_model
|
| 68 |
+
global seg_model_id
|
| 69 |
+
if model_id != seg_model_id:
|
| 70 |
+
seg_model = YOLO(model_id)
|
| 71 |
+
seg_model_id = model_id
|
| 72 |
+
model = seg_model
|
| 73 |
+
elif task == 'classify':
|
| 74 |
+
global cls_model
|
| 75 |
+
global cls_model_id
|
| 76 |
+
if model_id != cls_model_id:
|
| 77 |
+
cls_model = YOLO(model_id)
|
| 78 |
+
cls_model_id = model_id
|
| 79 |
+
model = cls_model
|
| 80 |
+
else:
|
| 81 |
+
raise ValueError(f"Invalid task: {task}")
|
| 82 |
+
|
| 83 |
+
# set model parameters
|
| 84 |
+
model.overrides['conf'] = threshold
|
| 85 |
+
|
| 86 |
+
# perform inference
|
| 87 |
+
results = model.predict(image)
|
| 88 |
+
print(model_id)
|
| 89 |
+
print(task)
|
| 90 |
+
|
| 91 |
+
if task in ['detect', 'segment']:
|
| 92 |
+
# draw predictions
|
| 93 |
+
output = render_result(model=model, image=image, result=results[0])
|
| 94 |
+
elif task == 'classify':
|
| 95 |
+
# postprocess classification output
|
| 96 |
+
output = postprocess_classify_output(model, result=results[0])
|
| 97 |
+
else:
|
| 98 |
+
raise ValueError(f"Invalid task: {task}")
|
| 99 |
+
|
| 100 |
+
return output
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
with gr.Blocks() as demo:
|
| 104 |
+
gr.Markdown("""# <p align='center'><img width='500px' src='https://user-images.githubusercontent.com/34196005/215836968-fb54e066-a524-4caf-b469-92bbaa96f921.gif' /></p>
|
| 105 |
+
<p style='text-align: center'>
|
| 106 |
+
<br> <a href='https://yolov8.xyz' target='_blank'>project website</a> | <a href='https://github.com/keremberke/awesome-yolov8-models' target='_blank'>project github</a>
|
| 107 |
+
</p>
|
| 108 |
+
<p style='text-align: center'>
|
| 109 |
+
Follow me for more!
|
| 110 |
+
<br> <a href='https://twitter.com/_keremberke' target='_blank'>twitter</a> | <a href='https://github.com/keremberke' target='_blank'>github</a> | <a href='https://www.linkedin.com/in/kerem-berke-bba6a5204/' target='_blank'>linkedin</a>
|
| 111 |
+
</p>
|
| 112 |
+
""")
|
| 113 |
+
with gr.Tab("Detection"):
|
| 114 |
+
with gr.Row():
|
| 115 |
+
with gr.Column():
|
| 116 |
+
detect_input = gr.Image()
|
| 117 |
+
detect_model_id = gr.Dropdown(choices=det_model_ids, label="Model:", value=DEFAULT_DET_MODEL_ID, interactive=True)
|
| 118 |
+
detect_threshold = gr.Slider(maximum=1, step=0.01, value=0.25, label="Threshold:", interactive=True)
|
| 119 |
+
detect_button = gr.Button("Detect!")
|
| 120 |
+
with gr.Column():
|
| 121 |
+
detect_output = gr.Image(label="Predictions:", interactive=False)
|
| 122 |
+
with gr.Row():
|
| 123 |
+
gr.Examples(
|
| 124 |
+
det_examples,
|
| 125 |
+
inputs=[detect_input, detect_model_id, detect_threshold],
|
| 126 |
+
outputs=detect_output,
|
| 127 |
+
fn=predict,
|
| 128 |
+
cache_examples=True,
|
| 129 |
+
)
|
| 130 |
+
with gr.Tab("Segmentation"):
|
| 131 |
+
with gr.Row():
|
| 132 |
+
with gr.Column():
|
| 133 |
+
segment_input = gr.Image()
|
| 134 |
+
segment_model_id = gr.Dropdown(choices=seg_model_ids, label="Model:", value=DEFAULT_SEG_MODEL_ID, interactive=True)
|
| 135 |
+
segment_threshold = gr.Slider(maximum=1, step=0.01, value=0.25, label="Threshold:", interactive=True)
|
| 136 |
+
segment_button = gr.Button("Segment!")
|
| 137 |
+
with gr.Column():
|
| 138 |
+
segment_output = gr.Image(label="Predictions:", interactive=False)
|
| 139 |
+
with gr.Row():
|
| 140 |
+
gr.Examples(
|
| 141 |
+
seg_examples,
|
| 142 |
+
inputs=[segment_input, segment_model_id, segment_threshold],
|
| 143 |
+
outputs=segment_output,
|
| 144 |
+
fn=predict,
|
| 145 |
+
cache_examples=False,
|
| 146 |
+
)
|
| 147 |
+
with gr.Tab("Classification"):
|
| 148 |
+
with gr.Row():
|
| 149 |
+
with gr.Column():
|
| 150 |
+
classify_input = gr.Image()
|
| 151 |
+
classify_model_id = gr.Dropdown(choices=cls_model_ids, label="Model:", value=DEFAULT_CLS_MODEL_ID, interactive=True)
|
| 152 |
+
classify_threshold = gr.Slider(maximum=1, step=0.01, value=0.25, label="Threshold:", interactive=True)
|
| 153 |
+
classify_button = gr.Button("Classify!")
|
| 154 |
+
with gr.Column():
|
| 155 |
+
classify_output = gr.Label(
|
| 156 |
+
label="Predictions:", show_label=True, num_top_classes=5
|
| 157 |
+
)
|
| 158 |
+
with gr.Row():
|
| 159 |
+
gr.Examples(
|
| 160 |
+
cls_examples,
|
| 161 |
+
inputs=[classify_input, classify_model_id, classify_threshold],
|
| 162 |
+
outputs=classify_output,
|
| 163 |
+
fn=predict,
|
| 164 |
+
cache_examples=False,
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
detect_button.click(
|
| 168 |
+
predict, inputs=[detect_input, detect_model_id, detect_threshold], outputs=detect_output
|
| 169 |
+
)
|
| 170 |
+
segment_button.click(
|
| 171 |
+
predict, inputs=[segment_input, segment_model_id, segment_threshold], outputs=segment_output
|
| 172 |
+
)
|
| 173 |
+
classify_button.click(
|
| 174 |
+
predict, inputs=[classify_input, classify_model_id, classify_threshold], outputs=classify_output
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
demo.launch(server_port=8080)
|
cls_models.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
keremberke/yolov8m-shoe-classification
|
| 2 |
+
keremberke/yolov8m-chest-xray-classification
|
det_models.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
keremberke/yolov8m-valorant-detection
|
| 2 |
+
keremberke/yolov8m-csgo-player-detection
|
| 3 |
+
keremberke/yolov8m-forklift-detection
|
| 4 |
+
keremberke/yolov8m-blood-cell-detection
|
| 5 |
+
keremberke/yolov8m-plane-detection
|
| 6 |
+
keremberke/yolov8m-nlf-head-detection
|
| 7 |
+
keremberke/yolov8m-hard-hat-detection
|
| 8 |
+
keremberke/yolov8m-table-extraction
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
ultralyticsplus==0.0.25
|
seg_models.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
keremberke/yolov8m-pcb-defect-segmentation
|
| 2 |
+
keremberke/yolov8s-building-segmentation
|
| 3 |
+
keremberke/yolov8n-pothole-segmentation
|
utils.py
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
DET_MODELS_FILENAME = 'det_models.txt'
|
| 2 |
+
SEG_MODELS_FILENAME = 'seg_models.txt'
|
| 3 |
+
CLS_MODELS_FILENAME = 'cls_models.txt'
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def load_models_from_txt_files():
|
| 7 |
+
"""Load models from txt files."""
|
| 8 |
+
with open(DET_MODELS_FILENAME, 'r') as file:
|
| 9 |
+
det_models = [line.strip() for line in file]
|
| 10 |
+
with open(SEG_MODELS_FILENAME, 'r') as file:
|
| 11 |
+
seg_models = [line.strip() for line in file]
|
| 12 |
+
with open(CLS_MODELS_FILENAME, 'r') as file:
|
| 13 |
+
cls_models = [line.strip() for line in file]
|
| 14 |
+
return det_models, seg_models, cls_models
|