lucifertrj commited on
Commit
bcc1f3f
·
1 Parent(s): 097b324

gradio app

Browse files
Files changed (1) hide show
  1. app.py +66 -0
app.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from collections import OrderedDict
3
+ import numpy as np
4
+ from huggingface_hub import from_pretrained_keras
5
+
6
+ def predict(
7
+ age,workclass,fnlwgt,education,education_num,marital_status,occupation,relationship,
8
+ race,gender,capital_gain,capital_loss,hours_per_week,native_country
9
+ ):
10
+ user_data = {}
11
+ user_data['age'] = np.array([age],dtype=np.float32)
12
+ user_data['workclass'] = np.array([f'{workclass}'],dtype="object")
13
+ user_data['fnlwgt'] = np.array([fnlwgt],dtype=np.float32)
14
+ user_data['education'] = np.array([f'{education}'],dtype="object")
15
+ user_data['education_num'] = np.array([education_num],dtype=np.float32)
16
+ user_data['marital_status'] = np.array([f'{marital_status}'],dtype="object")
17
+ user_data['occupation'] = np.array([f'{occupation}'],dtype="object")
18
+ user_data['relationship'] = np.array([f'{relationship}'],dtype="object")
19
+ user_data['race'] = np.array([f'{race}'],dtype="object")
20
+ user_data['gender'] = np.array([f'{gender}'],dtype="object")
21
+ user_data['capital_gain'] = np.array([capital_gain],dtype=np.float32)
22
+ user_data['capital_loss'] = np.array([capital_loss],dtype=np.float32)
23
+ user_data['hours_per_week'] = np.array([hours_per_week],dtype=np.float32)
24
+ user_data['native_country'] = np.array([f'{native_country}'],dtype="object")
25
+ test_user_data = OrderedDict(user_data)
26
+ model = from_pretrained_keras("keras-io/neural-decision-forest")
27
+ pred = model.predict(test_user_data)
28
+ pred = np.argmax(pred,axis=1)
29
+ return f"Outcome: {pred}"
30
+
31
+ work_class_list = [' Self-emp-not-inc', ' Private', ' State-gov', ' Federal-gov',' Local-gov', ' ?', ' Self-emp-inc', ' Without-pay',' Never-worked']
32
+ education_list = [' Bachelors', ' HS-grad', ' 11th', ' Masters', ' 9th',' Some-college', ' Assoc-acdm', ' Assoc-voc', ' 7th-8th',' Doctorate', ' Prof-school', ' 5th-6th', ' 10th', ' 1st-4th',' Preschool', ' 12th']
33
+ martial_list = [' Married-civ-spouse',' Divorced',' Married-spouse-absent',' Never-married',' Separated',' Married-AF-spouse',' Widowed']
34
+ race_list = [' White',' Black',' Asian-Pac-Islander',' Amer-Indian-Eskimo',' Other']
35
+ relation_list = [' Husband',' Not-in-family',' Wife',' Own-child',' Unmarried',' Other-relative']
36
+ occupation_list = [' Exec-managerial',' Handlers-cleaners',' Prof-specialty',' Other-service',' Adm-clerical',' Sales',' Craft-repair',' Transport-moving',' Farming-fishing',' Machine-op-inspct',' Tech-support',' ?',' Protective-serv',' Armed-Forces',' Priv-house-serv']
37
+ countries = [' United-States',' Cuba',' Jamaica',' India',' Mexico',' South',' Puerto-Rico',' Honduras',' England',' Canada',' Germany',' Iran',' Philippines',' Italy',' Poland',' Columbia',' Cambodia',' Thailand',' Ecuador',' Laos',' Taiwan',' Haiti',' Portugal',' Dominican-Republic',' El-Salvador',' France',' Guatemala',' China',' Japan',' Yugoslavia',' Peru',' Outlying-US(Guam-USVI-etc)',' Scotland',' Trinadad&Tobago',' Greece',' Nicaragua',' Vietnam',' Hong',' Ireland',' Hungary',' Holand-Netherlands']
38
+
39
+ demo = gr.Interface(
40
+ predict,
41
+ [
42
+ gr.Slider(12, 85, value=1),
43
+ gr.Dropdown(work_class_list),
44
+ gr.Slider(1260, 12225, value=200),
45
+ gr.Dropdown(education_list),
46
+ gr.Slider(1, 16, value=2),
47
+ gr.Dropdown(martial_list),
48
+ gr.Dropdown(occupation_list),
49
+ gr.Dropdown(relation_list),
50
+ gr.Dropdown(race_list),
51
+ gr.Dropdown([' Male',' Female']),
52
+ gr.Slider(0, 10000, value=100),
53
+ gr.Slider(0, 4500, value=75),
54
+ gr.Slider(1, 100, value=2),
55
+ gr.Dropdown(countries),
56
+ ],
57
+ "text",
58
+ examples=
59
+ [
60
+ [35,' Private',5000,' Masters',8,' Divorced',' Tech-support',' Husband',' White',' Male',6000,0,40,' Germany'],
61
+ [27,' Self-emp-inc',2400,' Bachelors',6,' Separated',' Prof-specialty',' Wife',' Amer-Indian-Eskimo',' Female',4000,1050,32,' England'],
62
+ ]
63
+ )
64
+
65
+ if __name__ == "__main__":
66
+ demo.launch()