Spaces:
Runtime error
Runtime error
from huggingface_hub import from_pretrained_keras | |
from keras_cv import models | |
import gradio as gr | |
from tensorflow import keras | |
from diffusers import StableDiffusionPipeline | |
keras.mixed_precision.set_global_policy("mixed_float16") | |
# prepare model | |
resolution = 512 | |
# checkpoint of the converted Stable Diffusion from KerasCV | |
model_ckpt = "nielsgl/dreambooth-bored-ape" | |
pipeline = StableDiffusionPipeline.from_pretrained(model_ckpt) | |
pipeline = pipeline.to("cuda") | |
unique_id = "drawbayc" | |
class_label = "monkey" | |
prompt = f"A drawing of {unique_id} {class_label} as a cowboy" | |
image = pipeline(prompt, num_inference_steps=50).images[0] | |
# generate images | |
def infer(prompt, negative_prompt, guidance_scale=10, num_inference_steps=50): | |
neg = negative_prompt if negative_prompt else None | |
imgs = [] | |
while len(imgs) != 4: | |
next_prompt = pipeline(prompt, negative_prompt=neg, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, num_images_per_prompt=5) | |
for img, is_neg in zip(next_prompt.images, next_prompt.nsfw_content_detected): | |
if not is_neg: | |
imgs.append(img) | |
if len(imgs) == 4: | |
break | |
return imgs | |
output = gr.Gallery(label="Outputs").style(grid=(1,2)) | |
# customize interface | |
title = "KerasCV Stable Diffusion Demo on images of Bored Apes." | |
description = "This is a dreambooth model fine-tuned on images the NFT collection of the Bored Ape Yacht Club. To try it, input the concept with `drawbayc ape`." | |
examples=[ | |
["A drawing of a drawbayc ape dressed as a cowboy", "bad anatomy, blurry, ugly, deformed, disfigured", 12, 75], | |
["A drawing of a drawbayc ape dressed as a clown", "bad anatomy, blurry, ugly, deformed, disfigured", 12, 75], | |
["A drawing of a drawbayc ape dressed as a turtle", "bad anatomy, blurry, ugly, deformed, disfigured", 12, 75], | |
] | |
base_14 = "https://huggingface.co/nielsgl/dreambooth-bored-ape/resolve/main/" | |
model_card_1 = f""" | |
# KerasCV Stable Diffusion in Diffusers π§¨π€ | |
DreamBooth model for the `drawbayc ape` concept trained by nielsgl on the [bayc-tiny](https://huggingface.co/datasets/nielsgl/bayc-tiny) dataset, images from this [Kaggle dataset](https://www.kaggle.com/datasets/stanleyjzheng/bored-apes-yacht-club). | |
It can be used by modifying the `instance_prompt`: **a drawing of drawbayc ape** | |
The model for this space can be found [here](https://huggingface.co/nielsgl/dreambooth-bored-ape). | |
## Description | |
The Stable Diffusion V2 pipeline contained in the corresponding repository (`nielsgl/dreambooth-bored-ape`) was created using a modified version of [this Space](https://huggingface.co/spaces/sayakpaul/convert-kerascv-sd-diffusers) for StableDiffusionV2 from KerasCV. The purpose is to convert the KerasCV Stable Diffusion weights in a way that is compatible with [Diffusers](https://github.com/huggingface/diffusers). This allows users to fine-tune using KerasCV and use the fine-tuned weights in Diffusers taking advantage of its nifty features (like [schedulers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/schedulers), [fast attention](https://huggingface.co/docs/diffusers/optimization/fp16), etc.). | |
This model was created as part of the Keras DreamBooth Sprint π₯. Visit the [organisation page](https://huggingface.co/keras-dreambooth) for instructions on how to take part! | |
## Demo | |
""" | |
model_card_2 = f""" | |
## Examples | |
> A drawing of drawbayc monkey dressed as an astronaut | |
 | |
> A drawing of drawbayc monkey dressed as the pope | |
 | |
## Usage with Stable Diffusion V2.1 | |
```python | |
from diffusers import StableDiffusionPipeline | |
pipeline = StableDiffusionPipeline.from_pretrained('nielsgl/dreambooth-bored-ape') | |
image = pipeline().images[0] | |
image | |
``` | |
""" | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
gr.Markdown(model_card_1) | |
with gr.Row(): | |
with gr.Column(): | |
prompt_pos = gr.Textbox(label="Positive Prompt", value="a drawing of drawbayc ape as an astronaut") | |
prompt_neg = gr.Textbox(label="Negative Prompt", value="bad anatomy, blurry, ugly, deformed, disfigured") | |
prompt_gs = gr.Number(label='Guidance scale', value=12) | |
prompt_steps = gr.Slider(label="Inference Steps",value=50) | |
prompt_btn = gr.Button("Generate") | |
with gr.Column(): | |
output = gr.Gallery(label="Outputs").style(grid=(1,2)) | |
prompt_btn.click(infer, inputs=[prompt_pos, prompt_neg, prompt_gs, prompt_steps], outputs=[output]) | |
with gr.Row(): | |
gr.Examples(examples, inputs=[prompt_pos, prompt_neg, prompt_gs, prompt_steps], outputs=output, fn=infer, cache_examples=True) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(model_card_2) | |
with gr.Column(): | |
gr.Markdown(" ") | |
demo.queue().launch() | |