Spaces:
				
			
			
	
			
			
		Paused
		
	
	
	
			
			
	
	
	
	
		
		
		Paused
		
	| import re | |
| from urllib.parse import urlparse, parse_qs | |
| import pandas as pd | |
| import unicodedata as uni | |
| import emoji | |
| from langchain_openai import ChatOpenAI | |
| from langchain_community.embeddings import HuggingFaceEmbeddings | |
| from langchain_community.document_loaders import DataFrameLoader | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain_community.vectorstores import FAISS | |
| from langchain.chains import RetrievalQA | |
| from tokopedia import request_product_id, request_product_review | |
| import gradio as gr | |
| shop_id = "" | |
| item_id = "" | |
| item = {} | |
| LIMIT = 1000 # Limit to 1000 reviews so that processing does not take too long | |
| def scrape(URL, max_reviews=LIMIT): | |
| parsed_url = urlparse(URL) | |
| *_, SHOP, PRODUCT_KEY = parsed_url.path.split("/") | |
| product_id = request_product_id(SHOP, PRODUCT_KEY).json()["data"]["pdpGetLayout"][ | |
| "basicInfo" | |
| ]["id"] | |
| all_reviews = [] | |
| page = 1 | |
| has_next = True | |
| while has_next and len(all_reviews) <= max_reviews: | |
| response = request_product_review(product_id, page=page) | |
| data = response.json()["data"]["productrevGetProductReviewList"] | |
| reviews = data["list"] | |
| all_reviews.extend(reviews) | |
| has_next = data["hasNext"] | |
| page += 1 | |
| reviews_df = pd.json_normalize(all_reviews) | |
| return reviews_df | |
| # Clean | |
| def clean(df): | |
| df = df.dropna().copy().reset_index(drop=True) # drop reviews with empty comments | |
| df = df[df["comment"] != ""].reset_index(drop=True) # remove empty reviews | |
| df["comment"] = df["comment"].apply(lambda x: clean_text(x)) # clean text | |
| df = df[df["comment"] != ""].reset_index(drop=True) # remove empty reviews | |
| return df | |
| def clean_text(text): | |
| text = uni.normalize("NFKD", text) # normalise characters | |
| text = emoji.replace_emoji(text, "") # remove emoji | |
| text = re.sub(r"(\w)\1{2,}", r"\1", text) # repeated chars | |
| text = re.sub(r"[ ]+", " ", text).strip() # remove extra spaces | |
| return text | |
| # LLM | |
| OpenAIModel = "gpt-3.5-turbo" | |
| llm = ChatOpenAI(model=OpenAIModel, temperature=0.1) | |
| # Embeddings | |
| embeddings = HuggingFaceEmbeddings(model_name="Blaxzter/LaBSE-sentence-embeddings") | |
| cache_URL = "" | |
| db = None | |
| qa = None | |
| def generate(URL, query): | |
| global cache_URL, db, qa | |
| if URL != cache_URL: | |
| # Get reviews | |
| try: | |
| reviews = scrape(URL) | |
| # Clean reviews | |
| cleaned_reviews = clean(reviews) | |
| # Load data | |
| loader = DataFrameLoader(cleaned_reviews, page_content_column="comment") | |
| documents = loader.load() | |
| except Exception as e: | |
| return "Error getting reviews: " + str(e) | |
| # Split text | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| chunk_size=1000, chunk_overlap=50 | |
| ) | |
| docs = text_splitter.split_documents(documents) | |
| cache_URL = URL | |
| # Vector store | |
| db = FAISS.from_documents(docs, embeddings) | |
| # Chain to answer questions | |
| qa = RetrievalQA.from_chain_type(llm=llm, retriever=db.as_retriever()) | |
| return qa.run(query) | |
| # Gradio | |
| product_box = gr.Textbox( | |
| label="URL Produk", placeholder="URL produk dari Tokopedia" | |
| ) | |
| query_box = gr.Textbox( | |
| lines=2, | |
| label="Kueri", | |
| placeholder="Contoh: Apa yang orang katakan tentang kualitas produknya?, Bagaimana pendapat orang yang kurang puas dengan produknya?", | |
| ) | |
| gr.Interface( | |
| fn=generate, | |
| inputs=[product_box, query_box], | |
| outputs=gr.Textbox(label="Jawaban"), | |
| title="RingkasUlas", | |
| description="Bot percakapan yang bisa meringkas ulasan-ulasan produk di Tokopedia Indonesia (https://tokopedia.com/). Harap bersabar, bot ini dapat memakan waktu agak lama saat mengambil ulasan dari Tokopedia dan menyiapkan jawabannya.", | |
| allow_flagging="never", | |
| examples=[ | |
| [ | |
| "https://www.tokopedia.com/benitashop/telur-asin-powder-madam-kwan-golden-salted-egg-powder", | |
| "Berapa lama produknya bisa bertahan?", | |
| ], | |
| [ | |
| "https://www.tokopedia.com/benitashop/telur-asin-powder-madam-kwan-golden-salted-egg-powder", | |
| "Produknya bisa dipakai untuk memasak apa?", | |
| ], | |
| ], | |
| ).launch() | |
