KB Teo
Update interface
d866b52
raw
history blame
1.21 kB
from typing import *
import gradio as gr
from predict import predict_fn
from utils import populate_examples
description = """
Anomaly detection models are trained with only <span style="color:lime;font-weight:bold">normal</span> images,
and aimed to segment <span style="color:red;font-weight:bold">anomalies (deviations)</span> in input images.
Scroll to bottom of this demo for a list of pretrained examples.
"""
def launch():
input_image = gr.Image(label="Input image")
threshold = gr.Slider(value=1, step=0.1, label="Threshold")
devices = gr.Radio(
label="Device",
choices=["AUTO", "CPU", "GPU"],
value="CPU",
interactive=False
)
model = gr.Text(label="Model", interactive=False)
output_image = gr.Image(label="Output image")
output_heatmap = gr.Image(label="Heatmap")
intf = gr.Interface(
title="Anomaly Detection",
description=description,
fn=predict_fn,
inputs=[input_image, threshold, devices, model],
outputs=[output_image, output_heatmap],
examples=populate_examples(),
allow_flagging="never"
)
intf.launch()
if __name__ == "__main__":
launch()