Spaces:
Running
Running
File size: 1,206 Bytes
098c98c d866b52 098c98c d866b52 098c98c d866b52 098c98c d866b52 098c98c 32f1589 098c98c d866b52 098c98c 508121b d866b52 098c98c d866b52 32f1589 d866b52 098c98c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
from typing import *
import gradio as gr
from predict import predict_fn
from utils import populate_examples
description = """
Anomaly detection models are trained with only <span style="color:lime;font-weight:bold">normal</span> images,
and aimed to segment <span style="color:red;font-weight:bold">anomalies (deviations)</span> in input images.
Scroll to bottom of this demo for a list of pretrained examples.
"""
def launch():
input_image = gr.Image(label="Input image")
threshold = gr.Slider(value=1, step=0.1, label="Threshold")
devices = gr.Radio(
label="Device",
choices=["AUTO", "CPU", "GPU"],
value="CPU",
interactive=False
)
model = gr.Text(label="Model", interactive=False)
output_image = gr.Image(label="Output image")
output_heatmap = gr.Image(label="Heatmap")
intf = gr.Interface(
title="Anomaly Detection",
description=description,
fn=predict_fn,
inputs=[input_image, threshold, devices, model],
outputs=[output_image, output_heatmap],
examples=populate_examples(),
allow_flagging="never"
)
intf.launch()
if __name__ == "__main__":
launch() |