Spaces:
Paused
Paused
File size: 14,045 Bytes
dbd2ac6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import time
import pytest
from tests.utils import wrap_test_forked
from src.enums import source_prefix, source_postfix
from src.prompter import generate_prompt
example_data_point0 = dict(instruction="Summarize",
input="Ducks eat seeds by the lake, then swim in the lake where fish eat small animals.",
output="Ducks eat and swim at the lake.")
example_data_point1 = dict(instruction="Who is smarter, Einstein or Newton?",
output="Einstein.")
example_data_point2 = dict(input="Who is smarter, Einstein or Newton?",
output="Einstein.")
example_data_points = [example_data_point0, example_data_point1, example_data_point2]
@wrap_test_forked
def test_train_prompt(prompt_type='instruct', data_point=0):
example_data_point = example_data_points[data_point]
return generate_prompt(example_data_point, prompt_type, '', False, False, False)
@wrap_test_forked
def test_test_prompt(prompt_type='instruct', data_point=0):
example_data_point = example_data_points[data_point]
example_data_point.pop('output', None)
return generate_prompt(example_data_point, prompt_type, '', False, False, False)
@wrap_test_forked
def test_test_prompt2(prompt_type='human_bot', data_point=0):
example_data_point = example_data_points[data_point]
example_data_point.pop('output', None)
res = generate_prompt(example_data_point, prompt_type, '', False, False, False)
print(res, flush=True)
return res
prompt_fastchat = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hello! ASSISTANT: Hi!</s>USER: How are you? ASSISTANT: I'm good</s>USER: Go to the market? ASSISTANT:"""
prompt_humanbot = """<human>: Hello!\n<bot>: Hi!\n<human>: How are you?\n<bot>: I'm good\n<human>: Go to the market?\n<bot>:"""
prompt_prompt_answer = "<|prompt|>Hello!<|endoftext|><|answer|>Hi!<|endoftext|><|prompt|>How are you?<|endoftext|><|answer|>I'm good<|endoftext|><|prompt|>Go to the market?<|endoftext|><|answer|>"
prompt_prompt_answer_openllama = "<|prompt|>Hello!</s><|answer|>Hi!</s><|prompt|>How are you?</s><|answer|>I'm good</s><|prompt|>Go to the market?</s><|answer|>"
prompt_mpt_instruct = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction
Hello!
### Response
Hi!
### Instruction
How are you?
### Response
I'm good
### Instruction
Go to the market?
### Response
"""
prompt_mpt_chat = """<|im_start|>system
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.
<|im_end|><|im_start|>user
Hello!<|im_end|><|im_start|>assistant
Hi!<|im_end|><|im_start|>user
How are you?<|im_end|><|im_start|>assistant
I'm good<|im_end|><|im_start|>user
Go to the market?<|im_end|><|im_start|>assistant
"""
prompt_falcon = """User: Hello!
Assistant: Hi!
User: How are you?
Assistant: I'm good
User: Go to the market?
Assistant:"""
prompt_llama2 = """<s>[INST] Hello! [/INST] Hi! </s><s>[INST] How are you? [/INST] I'm good </s><s>[INST] Go to the market? [/INST]"""
prompt_llama2_sys = """<s>[INST] <<SYS>>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<</SYS>>
Hello! [/INST] Hi! </s><s>[INST] How are you? [/INST] I'm good </s><s>[INST] Go to the market? [/INST]"""
prompt_llama2_pig = """<s>[INST] Who are you? [/INST] I am a big pig who loves to tell kid stories </s><s>[INST] Hello! [/INST] Hi! </s><s>[INST] How are you? [/INST] I'm good </s><s>[INST] Go to the market? [/INST]"""
# Fastsys doesn't put space above before final [/INST], I think wrong, since with context version has space.
# and llama2 code has space before it always: https://github.com/facebookresearch/llama/blob/6c7fe276574e78057f917549435a2554000a876d/llama/generation.py
prompt_beluga = """### User:
Hello!
### Assistant:
Hi!
### User:
How are you?
### Assistant:
I'm good
### User:
Go to the market?
### Assistant:
"""
prompt_beluga_sys = """### System:
You are Stable Beluga, an AI that follows instructions extremely well. Help as much as you can. Remember, be safe, and don't do anything illegal.
### User:
Hello!
### Assistant:
Hi!
### User:
How are you?
### Assistant:
I'm good
### User:
Go to the market?
### Assistant:
"""
prompt_falcon180 = """User: Hello!
Falcon: Hi!
User: How are you?
Falcon: I'm good
User: Go to the market?
Falcon:"""
prompt_falcon180_sys = """System: You are an intelligent and helpful assistant.
User: Hello!
Falcon: Hi!
User: How are you?
Falcon: I'm good
User: Go to the market?
Falcon:"""
@wrap_test_forked
@pytest.mark.parametrize("prompt_type,system_prompt,chat_conversation,expected",
[
('vicuna11', '', None, prompt_fastchat),
('human_bot', '', None, prompt_humanbot),
('prompt_answer', '', None, prompt_prompt_answer),
('prompt_answer_openllama', '', None, prompt_prompt_answer_openllama),
('mptinstruct', '', None, prompt_mpt_instruct),
('mptchat', '', None, prompt_mpt_chat),
('falcon', '', None, prompt_falcon),
('llama2', '', None, prompt_llama2),
('llama2', 'auto', None, prompt_llama2_sys),
('llama2', '', [('Who are you?', 'I am a big pig who loves to tell kid stories')],
prompt_llama2_pig),
('beluga', '', None, prompt_beluga),
('beluga', 'auto', None, prompt_beluga_sys),
('falcon_chat', '', None, prompt_falcon180),
('falcon_chat', 'auto', None, prompt_falcon180_sys),
]
)
def test_prompt_with_context(prompt_type, system_prompt, chat_conversation, expected):
prompt_dict = None # not used unless prompt_type='custom'
langchain_mode = 'Disabled'
add_chat_history_to_context = True
chat = True
model_max_length = 2048
memory_restriction_level = 0
keep_sources_in_context = False
iinput = ''
stream_output = False
debug = False
from src.prompter import Prompter
from src.gen import history_to_context
t0 = time.time()
history = [["Hello!", "Hi!"],
["How are you?", "I'm good"],
["Go to the market?", None]
]
print("duration1: %s %s" % (prompt_type, time.time() - t0), flush=True)
t0 = time.time()
context = history_to_context(history,
langchain_mode=langchain_mode,
add_chat_history_to_context=add_chat_history_to_context,
prompt_type=prompt_type,
prompt_dict=prompt_dict,
chat=chat,
model_max_length=model_max_length,
memory_restriction_level=memory_restriction_level,
keep_sources_in_context=keep_sources_in_context,
system_prompt=system_prompt,
chat_conversation=chat_conversation)
print("duration2: %s %s" % (prompt_type, time.time() - t0), flush=True)
t0 = time.time()
instruction = history[-1][0]
# get prompt
prompter = Prompter(prompt_type, prompt_dict, debug=debug, chat=chat, stream_output=stream_output,
system_prompt=system_prompt)
# for instruction-tuned models, expect this:
assert prompter.PreResponse
assert prompter.PreInstruct
assert prompter.botstr
assert prompter.humanstr
print("duration3: %s %s" % (prompt_type, time.time() - t0), flush=True)
t0 = time.time()
data_point = dict(context=context, instruction=instruction, input=iinput)
prompt = prompter.generate_prompt(data_point)
print(prompt)
print("duration4: %s %s" % (prompt_type, time.time() - t0), flush=True)
assert prompt == expected
assert prompt.find(source_prefix) == -1
prompt_fastchat1 = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Go to the market? ASSISTANT:"""
prompt_humanbot1 = """<human>: Go to the market?\n<bot>:"""
prompt_prompt_answer1 = "<|prompt|>Go to the market?<|endoftext|><|answer|>"
prompt_prompt_answer_openllama1 = "<|prompt|>Go to the market?</s><|answer|>"
prompt_mpt_instruct1 = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction
Go to the market?
### Response
"""
prompt_mpt_chat1 = """<|im_start|>system
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.
<|im_end|><|im_start|>user
Go to the market?<|im_end|><|im_start|>assistant
"""
prompt_falcon1 = """User: Go to the market?
Assistant:"""
prompt_llama21 = """<s>[INST] Go to the market? [/INST]"""
prompt_llama21_sys = """<s>[INST] <<SYS>>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<</SYS>>
Go to the market? [/INST]"""
# Fastsys doesn't put space above before final [/INST], I think wrong, since with context version has space.
# and llama2 code has space before it always: https://github.com/facebookresearch/llama/blob/6c7fe276574e78057f917549435a2554000a876d/llama/generation.py
prompt_beluga1_sys = """### System:
You are Stable Beluga, an AI that follows instructions extremely well. Help as much as you can. Remember, be safe, and don't do anything illegal.
### User:
Go to the market?
### Assistant:
"""
prompt_beluga1 = """### User:
Go to the market?
### Assistant:
"""
prompt_falcon1801 = """User: Go to the market?
Falcon:"""
prompt_falcon1801_sys = """System: You are an intelligent and helpful assistant.
User: Go to the market?
Falcon:"""
@pytest.mark.parametrize("prompt_type,system_prompt,expected",
[
('vicuna11', '', prompt_fastchat1),
('human_bot', '', prompt_humanbot1),
('prompt_answer', '', prompt_prompt_answer1),
('prompt_answer_openllama', '', prompt_prompt_answer_openllama1),
('mptinstruct', '', prompt_mpt_instruct1),
('mptchat', '', prompt_mpt_chat1),
('falcon', '', prompt_falcon1),
('llama2', '', prompt_llama21),
('llama2', 'auto', prompt_llama21_sys),
('beluga', '', prompt_beluga1),
('beluga', 'auto', prompt_beluga1_sys),
('falcon_chat', '', prompt_falcon1801),
('falcon_chat', 'auto', prompt_falcon1801_sys),
]
)
@wrap_test_forked
def test_prompt_with_no_context(prompt_type, system_prompt, expected):
prompt_dict = None # not used unless prompt_type='custom'
chat = True
iinput = ''
stream_output = False
debug = False
from src.prompter import Prompter
context = ''
instruction = "Go to the market?"
# get prompt
prompter = Prompter(prompt_type, prompt_dict, debug=debug, chat=chat, stream_output=stream_output,
system_prompt=system_prompt)
# for instruction-tuned models, expect this:
assert prompter.PreResponse
assert prompter.PreInstruct
assert prompter.botstr
assert prompter.humanstr
data_point = dict(context=context, instruction=instruction, input=iinput)
prompt = prompter.generate_prompt(data_point)
print(prompt)
assert prompt == expected
assert prompt.find(source_prefix) == -1
@wrap_test_forked
def test_source():
prompt = "Who are you?%s\nFOO\n%s" % (source_prefix, source_postfix)
assert prompt.find(source_prefix) >= 0
# https://huggingface.co/spaces/tiiuae/falcon-180b-demo/blob/main/app.py
def falcon180_format_prompt(message, history, system_prompt):
prompt = ""
if system_prompt:
prompt += f"System: {system_prompt}\n"
for user_prompt, bot_response in history:
prompt += f"User: {user_prompt}\n"
prompt += f"Falcon: {bot_response}\n" # Response already contains "Falcon: "
prompt += f"""User: {message}
Falcon:"""
return prompt
@wrap_test_forked
def test_falcon180():
prompt = "Who are you?"
for system_prompt in ['', "Talk like a Pixie."]:
history = [["Who are you?", "I am Falcon, a monster AI model."],
["What can you do?", "I can do well on leaderboard but not actually 1st."]]
formatted_prompt = falcon180_format_prompt(prompt, history, system_prompt)
print(formatted_prompt)
|