Create inference.py
Browse files- inference.py +25 -0
inference.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch # Import PyTorch
|
2 |
+
import torch.optim as optim
|
3 |
+
import torch.optim.lr_scheduler as lr_scheduler
|
4 |
+
from torch.utils.data import DataLoader
|
5 |
+
from torch import nn
|
6 |
+
from transformers import AutoModel, AutoTokenizer
|
7 |
+
|
8 |
+
class DebertaEvaluator(nn.Module):
|
9 |
+
|
10 |
+
def __init__(self):
|
11 |
+
super().__init__()
|
12 |
+
|
13 |
+
self.deberta = AutoModel.from_pretrained('microsoft/deberta-v3-base')
|
14 |
+
self.dropout = nn.Dropout(0.5)
|
15 |
+
self.linear = nn.Linear(768, 6)
|
16 |
+
|
17 |
+
def forward(self, input_id, mask):
|
18 |
+
output = self.deberta(input_ids=input_id, attention_mask=mask)
|
19 |
+
output_pooled = torch.mean(output.last_hidden_state, 1)
|
20 |
+
dropout_output = self.dropout(output_pooled)
|
21 |
+
linear_output = self.linear(dropout_output)
|
22 |
+
|
23 |
+
return linear_output
|
24 |
+
|
25 |
+
|