Spaces:
Sleeping
Sleeping
Adding ability to switch between small, base and large models
Browse files
app.py
CHANGED
@@ -1,16 +1,25 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
3 |
from langchain.memory import ConversationBufferMemory
|
|
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
|
7 |
-
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base")
|
8 |
|
9 |
# Set up conversational memory using LangChain's ConversationBufferMemory
|
10 |
memory = ConversationBufferMemory()
|
11 |
|
12 |
-
# Define the chatbot function with memory
|
13 |
-
def chat_with_flan(input_text):
|
14 |
# Retrieve conversation history and append the current user input
|
15 |
conversation_history = memory.load_memory_variables({})['history']
|
16 |
|
@@ -20,6 +29,9 @@ def chat_with_flan(input_text):
|
|
20 |
# Tokenize the input for the model
|
21 |
input_ids = tokenizer.encode(full_input, return_tensors="pt")
|
22 |
|
|
|
|
|
|
|
23 |
# Generate the response from the model
|
24 |
outputs = model.generate(input_ids, max_length=200, num_return_sequences=1)
|
25 |
|
@@ -38,17 +50,22 @@ with gr.Blocks() as interface:
|
|
38 |
# Add the instruction message above the input box
|
39 |
gr.Markdown("**Instructions:** Press `Shift + Enter` to submit, and `Enter` for a new line.")
|
40 |
|
|
|
|
|
|
|
41 |
# Input box for the user
|
42 |
user_input = gr.Textbox(label="Your Input", placeholder="Type your message here...", lines=2, show_label=True)
|
43 |
|
44 |
-
|
45 |
-
|
|
|
46 |
return updated_history, ""
|
47 |
|
48 |
# Submit when pressing Enter
|
49 |
-
user_input.submit(update_chat, inputs=[user_input,
|
50 |
|
|
|
|
|
|
|
51 |
# Launch the Gradio app
|
52 |
interface.launch()
|
53 |
-
|
54 |
-
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
3 |
from langchain.memory import ConversationBufferMemory
|
4 |
+
import torch
|
5 |
|
6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
+
|
8 |
+
# Load all three Flan-T5 models (small, base, large)
|
9 |
+
models = {
|
10 |
+
"small": T5ForConditionalGeneration.from_pretrained("google/flan-t5-small").to(device),
|
11 |
+
"base": T5ForConditionalGeneration.from_pretrained("google/flan-t5-base").to(device),
|
12 |
+
"large": T5ForConditionalGeneration.from_pretrained("google/flan-t5-large").to(device)
|
13 |
+
}
|
14 |
+
|
15 |
+
# Load the tokenizer (same tokenizer for all models)
|
16 |
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
|
|
|
17 |
|
18 |
# Set up conversational memory using LangChain's ConversationBufferMemory
|
19 |
memory = ConversationBufferMemory()
|
20 |
|
21 |
+
# Define the chatbot function with memory and model size selection
|
22 |
+
def chat_with_flan(input_text, model_size):
|
23 |
# Retrieve conversation history and append the current user input
|
24 |
conversation_history = memory.load_memory_variables({})['history']
|
25 |
|
|
|
29 |
# Tokenize the input for the model
|
30 |
input_ids = tokenizer.encode(full_input, return_tensors="pt")
|
31 |
|
32 |
+
# Get the model based on the selected size
|
33 |
+
model = models[model_size]
|
34 |
+
|
35 |
# Generate the response from the model
|
36 |
outputs = model.generate(input_ids, max_length=200, num_return_sequences=1)
|
37 |
|
|
|
50 |
# Add the instruction message above the input box
|
51 |
gr.Markdown("**Instructions:** Press `Shift + Enter` to submit, and `Enter` for a new line.")
|
52 |
|
53 |
+
# Add a dropdown for selecting the model size (small, base, large)
|
54 |
+
model_selector = gr.Dropdown(choices=["small", "base", "large"], value="base", label="Select Model Size")
|
55 |
+
|
56 |
# Input box for the user
|
57 |
user_input = gr.Textbox(label="Your Input", placeholder="Type your message here...", lines=2, show_label=True)
|
58 |
|
59 |
+
# Define the function to update the chat based on selected model
|
60 |
+
def update_chat(input_text, model_size):
|
61 |
+
updated_history = chat_with_flan(input_text, model_size)
|
62 |
return updated_history, ""
|
63 |
|
64 |
# Submit when pressing Enter
|
65 |
+
user_input.submit(update_chat, inputs=[user_input, model_selector], outputs=[chatbot_output, user_input])
|
66 |
|
67 |
+
# Layout for model selector and chatbot UI
|
68 |
+
gr.Row([model_selector])
|
69 |
+
|
70 |
# Launch the Gradio app
|
71 |
interface.launch()
|
|
|
|