Spaces:
Runtime error
Runtime error
Changing to run LLama 3.2
Browse files
app.py
CHANGED
@@ -1,11 +1,13 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
|
|
|
|
9 |
|
10 |
def respond(
|
11 |
message,
|
@@ -15,8 +17,8 @@ def respond(
|
|
15 |
temperature,
|
16 |
top_p,
|
17 |
):
|
|
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
for val in history:
|
21 |
if val[0]:
|
22 |
messages.append({"role": "user", "content": val[0]})
|
@@ -24,25 +26,20 @@ def respond(
|
|
24 |
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
messages.append({"role": "user", "content": message})
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
stream=True,
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
-
)
|
37 |
-
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
@@ -59,6 +56,5 @@ demo = gr.ChatInterface(
|
|
59 |
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
|
5 |
+
# Load Llama 3.2-3B-Instruct model locally
|
6 |
+
model_name = "meta-llama/Llama-3.2-3B-Instruct"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(
|
9 |
+
model_name, torch_dtype=torch.float16, device_map="auto"
|
10 |
+
)
|
11 |
|
12 |
def respond(
|
13 |
message,
|
|
|
17 |
temperature,
|
18 |
top_p,
|
19 |
):
|
20 |
+
# Format the conversation history
|
21 |
messages = [{"role": "system", "content": system_message}]
|
|
|
22 |
for val in history:
|
23 |
if val[0]:
|
24 |
messages.append({"role": "user", "content": val[0]})
|
|
|
26 |
messages.append({"role": "assistant", "content": val[1]})
|
27 |
|
28 |
messages.append({"role": "user", "content": message})
|
29 |
+
prompt = "\n".join([msg["content"] for msg in messages])
|
30 |
|
31 |
+
# Tokenize and generate response
|
32 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
33 |
+
outputs = model.generate(
|
34 |
+
**inputs,
|
35 |
+
max_new_tokens=max_tokens,
|
|
|
36 |
temperature=temperature,
|
37 |
top_p=top_p,
|
38 |
+
)
|
39 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
40 |
+
return response
|
|
|
|
|
41 |
|
42 |
+
# Gradio ChatInterface with controls for temperature, tokens, etc.
|
|
|
|
|
|
|
43 |
demo = gr.ChatInterface(
|
44 |
respond,
|
45 |
additional_inputs=[
|
|
|
56 |
],
|
57 |
)
|
58 |
|
|
|
59 |
if __name__ == "__main__":
|
60 |
demo.launch()
|