import gradio as gr from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import psutil # For tracking CPU memory usage import torch # For tracking GPU memory usage # Load the shared tokenizer (can be reused across all models) tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base") # Define the available model names and paths model_names = { "Flan-T5-small": "google/flan-t5-small", "Flan-T5-base": "google/flan-t5-base", "Flan-T5-large": "google/flan-t5-large", "Flan-T5-XL": "google/flan-t5-xl" } # Initialize variables to manage loaded model current_model = None current_model_name = None def load_model(model_name): """Load the model if not already loaded or if switching models.""" global current_model, current_model_name # Load the model only if it hasn't been loaded or if a different one is selected if model_name != current_model_name: print(f"Loading {model_name}...") current_model = AutoModelForSeq2SeqLM.from_pretrained(model_names[model_name]) current_model_name = model_name return current_model def get_memory_usage(): """Return current CPU and GPU memory usage as a formatted string.""" memory_info = psutil.virtual_memory() cpu_memory = f"CPU Memory: {memory_info.used / (1024**3):.2f} GB / {memory_info.total / (1024**3):.2f} GB" if torch.cuda.is_available(): gpu_memory = torch.cuda.memory_allocated() / (1024**3) gpu_total = torch.cuda.get_device_properties(0).total_memory / (1024**3) gpu_memory_info = f" | GPU Memory: {gpu_memory:.2f} GB / {gpu_total:.2f} GB" else: gpu_memory_info = " | GPU Memory: Not available" return cpu_memory + gpu_memory_info def respond( message, history: list[tuple[str, str]], model_choice, max_tokens, temperature, top_p, ): # Load the selected model (or switch models if needed) model = load_model(model_choice) # Prepare the input by concatenating the history into a dialogue format input_text = "" for user_msg, bot_msg in history: input_text += f"User: {user_msg} Assistant: {bot_msg} " input_text += f"User: {message}" # Tokenize the input text using the shared tokenizer inputs = tokenizer(input_text, return_tensors="pt", truncation=True) # Generate the response using the selected Flan-T5 model output_tokens = model.generate( inputs["input_ids"], max_length=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, ) # Decode and return the assistant's response response = tokenizer.decode(output_tokens[0], skip_special_tokens=True) yield response # Define the Gradio interface with memory usage widget def update_memory_widget(): """Update the memory usage widget dynamically.""" return get_memory_usage() with gr.Blocks() as interface: gr.Markdown("### Model Selection and Memory Usage") # Render the main chat interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Dropdown( choices=["Flan-T5-small", "Flan-T5-base", "Flan-T5-large", "Flan-T5-XL"], value="Flan-T5-base", # Default selection label="Model" ), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) demo.render() # Add the memory usage widget memory_widget = gr.Textbox(label="Memory Usage", interactive=False, value=get_memory_usage()) gr.Row([memory_widget]) # Set up a timer to update memory usage every second interface.load(update_memory_widget, None, memory_widget, stream_every=1) if __name__ == "__main__": interface.launch()