Spaces:
Sleeping
Sleeping
Commit
·
efc7ea2
1
Parent(s):
9de6e3c
Checkin version 2
Browse files
README.md
CHANGED
@@ -12,16 +12,19 @@ short_description: Create an intelligent Bible study assistant that utilizes LL
|
|
12 |
|
13 |
## <h1 align="center" id="heading">An Agentic Bible Study Tool Built with LangChain and LangGraph</h1>
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
|
18 |
-
### Phase I
|
19 |
-
- Book of Genesis
|
20 |
-
- Examples of questions:
|
21 |
-
- How did GOD create the whole universe based on Genesis?
|
22 |
-
- Why LORD God make man leave garden?
|
23 |
-
- How did the Israelites, led by Jacob, end up in Egypt, and what role did Joseph play in their settlement there?
|
24 |
|
25 |
|
26 |
## Ship 🚢
|
27 |
-
Check out the prototype at https://huggingface.co/spaces/kcheng0816/BibleStudy
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
## <h1 align="center" id="heading">An Agentic Bible Study Tool Built with LangChain and LangGraph</h1>
|
14 |
|
15 |
+
Welcome to the Bible Study Tool, an interactive platform designed to deepen your understanding of the Bible, with a special focus on the book of Genesis (Phase I). Powered by advanced AI technology, this tool offers a variety of features to enrich your study experience:
|
16 |
+
|
17 |
+
Ask Questions: Receive detailed answers about Genesis through an AI-driven retrieval system that pulls from a comprehensive database of Bible verses.
|
18 |
+
Internet Search: Broaden your perspective by exploring additional context and related topics from the web.
|
19 |
+
Quiz Mode: Challenge yourself with personalized quizzes on specific verse ranges—just type "start quiz on <verse range>" (e.g., "start quiz on Genesis 1:1-5") to get started.
|
20 |
+
Built with a user-friendly chat interface, this tool makes Bible study engaging and accessible for everyone, whether you’re a beginner or a seasoned scholar. Dive in and let the Bible Study Tool guide you on your journey!
|
21 |
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
## Ship 🚢
|
26 |
+
Check out the prototype at https://huggingface.co/spaces/kcheng0816/BibleStudy
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
|
app.py
CHANGED
@@ -1,83 +1,174 @@
|
|
1 |
import os
|
|
|
|
|
|
|
2 |
from dotenv import load_dotenv
|
3 |
import chainlit as cl
|
4 |
-
|
5 |
-
|
6 |
-
from langchain_community.vectorstores import FAISS
|
7 |
-
from langchain_openai.embeddings import OpenAIEmbeddings
|
8 |
-
from langchain_core.documents import Document
|
9 |
-
from langchain_community.document_loaders import DirectoryLoader
|
10 |
-
from langchain_community.document_loaders import BSHTMLLoader
|
11 |
-
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
12 |
from langchain_huggingface import HuggingFaceEmbeddings
|
13 |
-
from langchain_qdrant import QdrantVectorStore
|
14 |
from qdrant_client import QdrantClient
|
15 |
-
from qdrant_client.http.models import
|
16 |
-
from
|
17 |
-
from
|
|
|
|
|
18 |
from langchain.prompts import ChatPromptTemplate
|
19 |
-
from
|
20 |
-
from
|
21 |
-
from langchain_core.
|
22 |
-
from
|
23 |
-
from typing_extensions import List, TypedDict
|
24 |
-
from langchain_core.documents import Document
|
25 |
-
from langchain_core.messages import HumanMessage
|
26 |
from langchain_core.tools import tool
|
27 |
-
from
|
|
|
|
|
28 |
from langchain_core.messages import AnyMessage
|
29 |
from langgraph.graph.message import add_messages
|
30 |
from typing import TypedDict, Annotated
|
31 |
-
from
|
|
|
|
|
32 |
|
33 |
-
#Load API Keys
|
34 |
load_dotenv()
|
|
|
|
|
35 |
|
36 |
-
#Load downloaded html pages of the book Genesis in Bible
|
37 |
path = "data/"
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
#
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
)
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
huggingface_embeddings = HuggingFaceEmbeddings(model_name="kcheng0816/finetuned_arctic_genesis")
|
|
|
52 |
|
53 |
-
#
|
54 |
client = QdrantClient(":memory:")
|
55 |
client.create_collection(
|
56 |
-
collection_name=
|
57 |
-
vectors_config=VectorParams(size=
|
58 |
)
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
)
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
return {"context" : retrieved_docs}
|
79 |
|
80 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
RAG_PROMPT = """\
|
82 |
You are a helpful assistant who answers questions based on provided context. You must only use the provided context, and cannot use your own knowledge.
|
83 |
|
@@ -89,105 +180,307 @@ You are a helpful assistant who answers questions based on provided context. You
|
|
89 |
"""
|
90 |
rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT)
|
91 |
|
|
|
|
|
|
|
92 |
|
93 |
-
#llm for RAG
|
94 |
rate_limiter = InMemoryRateLimiter(
|
95 |
-
requests_per_second=1,
|
96 |
-
check_every_n_seconds=0.1,
|
97 |
-
max_bucket_size=10,
|
98 |
)
|
99 |
-
llm = init_chat_model("gpt-4o-mini", rate_limiter=rate_limiter)
|
100 |
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
|
104 |
-
messages = rag_prompt.format_messages(question=state["question"], context=docs_content)
|
105 |
-
response = llm.invoke(messages)
|
106 |
-
return {"response" : response.content}
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
response: str
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
117 |
|
|
|
|
|
|
|
118 |
|
119 |
@tool
|
120 |
-
def ai_rag_tool(question: str)
|
121 |
-
"""Useful for when you need to answer questions about Bible
|
122 |
-
response =
|
123 |
return {
|
124 |
"message": [HumanMessage(content=response["response"])],
|
125 |
-
"context": response["context"]
|
126 |
}
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
135 |
|
|
|
136 |
|
|
|
|
|
|
|
137 |
|
138 |
-
#
|
139 |
class AgentState(TypedDict):
|
140 |
messages: Annotated[list[AnyMessage], add_messages]
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
|
144 |
def call_mode(state):
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
response = llm_with_tools.invoke(messages)
|
147 |
-
return {
|
148 |
-
|
149 |
-
"context": state.get("context",[])
|
150 |
-
}
|
151 |
|
152 |
tool_node = ToolNode(tool_belt)
|
153 |
|
154 |
def should_continue(state):
|
155 |
last_message = state["messages"][-1]
|
156 |
-
|
157 |
if last_message.tool_calls:
|
158 |
return "action"
|
159 |
-
|
160 |
return END
|
161 |
|
162 |
-
|
163 |
uncompiled_graph = StateGraph(AgentState)
|
164 |
-
|
165 |
uncompiled_graph.add_node("agent", call_mode)
|
166 |
uncompiled_graph.add_node("action", tool_node)
|
167 |
-
|
168 |
uncompiled_graph.set_entry_point("agent")
|
169 |
-
|
170 |
-
uncompiled_graph.add_conditional_edges(
|
171 |
-
"agent",
|
172 |
-
should_continue
|
173 |
-
)
|
174 |
-
|
175 |
uncompiled_graph.add_edge("action", "agent")
|
176 |
-
|
177 |
-
# Compile the graph.
|
178 |
compiled_graph = uncompiled_graph.compile()
|
179 |
|
|
|
|
|
|
|
180 |
|
181 |
-
#user interface
|
182 |
@cl.on_chat_start
|
183 |
-
async def
|
184 |
-
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
|
188 |
@cl.on_message
|
189 |
-
async def
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import re
|
3 |
+
import random
|
4 |
+
import uuid
|
5 |
from dotenv import load_dotenv
|
6 |
import chainlit as cl
|
7 |
+
from langchain.docstore.document import Document
|
8 |
+
from bs4 import BeautifulSoup
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
from langchain_huggingface import HuggingFaceEmbeddings
|
|
|
10 |
from qdrant_client import QdrantClient
|
11 |
+
from qdrant_client.http.models import VectorParams, Distance
|
12 |
+
from qdrant_client.http.models import PointStruct
|
13 |
+
from langchain.storage import LocalFileStore
|
14 |
+
from langchain.embeddings import CacheBackedEmbeddings
|
15 |
+
from qdrant_client.http.models import Filter, FieldCondition, MatchValue, MatchAny
|
16 |
from langchain.prompts import ChatPromptTemplate
|
17 |
+
from langchain_core.runnables import RunnablePassthrough
|
18 |
+
from langchain_core.output_parsers import StrOutputParser
|
19 |
+
from langchain_core.runnables import RunnableLambda
|
20 |
+
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage, ToolMessage
|
|
|
|
|
|
|
21 |
from langchain_core.tools import tool
|
22 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
23 |
+
from functools import partial
|
24 |
+
from typing import Any, Callable, List, Optional, TypedDict, Union
|
25 |
from langchain_core.messages import AnyMessage
|
26 |
from langgraph.graph.message import add_messages
|
27 |
from typing import TypedDict, Annotated
|
28 |
+
from langgraph.prebuilt import ToolNode
|
29 |
+
from langgraph.graph import StateGraph, END
|
30 |
+
import json
|
31 |
|
32 |
+
# Load API Keys
|
33 |
load_dotenv()
|
34 |
+
os.environ["LANGCHAIN_PROJECT"] = f"AIE5- Bible Study Tool - {uuid.uuid4().hex[0:8]}"
|
35 |
+
os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
36 |
|
|
|
37 |
path = "data/"
|
38 |
+
book = "Genesis"
|
39 |
+
collection_name = "genesis_study"
|
40 |
+
|
41 |
+
# Load Genesis documents (unchanged from original)
|
42 |
+
def load_genesis_documents(path, book_name):
|
43 |
+
documents = []
|
44 |
+
for file in os.listdir(path):
|
45 |
+
if file.endswith(".html"):
|
46 |
+
file_path = os.path.join(path, file)
|
47 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
48 |
+
soup = BeautifulSoup(f, "html.parser")
|
49 |
+
p_tags = soup.find_all("p", align="left")
|
50 |
+
for p_tag in p_tags:
|
51 |
+
verse_texts = [content.strip() for content in p_tag.contents
|
52 |
+
if isinstance(content, str) and content.strip()]
|
53 |
+
for verse in verse_texts:
|
54 |
+
match = re.match(r"\[(\d+):(\d+)\]\s*(.*)", verse)
|
55 |
+
if match:
|
56 |
+
chapter = int(match.group(1))
|
57 |
+
verse_num = int(match.group(2))
|
58 |
+
text = match.group(3)
|
59 |
+
doc = Document(
|
60 |
+
page_content=text,
|
61 |
+
metadata={"book": book_name, "chapter": chapter, "verse": verse_num}
|
62 |
+
)
|
63 |
+
documents.append(doc)
|
64 |
+
return documents
|
65 |
+
|
66 |
+
documents = load_genesis_documents(path, book)
|
67 |
+
|
68 |
+
# Initialize embeddings
|
69 |
huggingface_embeddings = HuggingFaceEmbeddings(model_name="kcheng0816/finetuned_arctic_genesis")
|
70 |
+
dimension = len(huggingface_embeddings.embed_query("test"))
|
71 |
|
72 |
+
# Set up Qdrant client and collection
|
73 |
client = QdrantClient(":memory:")
|
74 |
client.create_collection(
|
75 |
+
collection_name=collection_name,
|
76 |
+
vectors_config=VectorParams(size=dimension, distance=Distance.COSINE)
|
77 |
)
|
78 |
|
79 |
+
# Generate and upload embeddings
|
80 |
+
embeddings = huggingface_embeddings.embed_documents([doc.page_content for doc in documents])
|
81 |
+
points = [
|
82 |
+
PointStruct(
|
83 |
+
id=str(uuid.uuid5(uuid.NAMESPACE_DNS, f"{doc.metadata['chapter']}_{doc.metadata['verse']}")),
|
84 |
+
vector=embedding,
|
85 |
+
payload={
|
86 |
+
"text": doc.page_content,
|
87 |
+
"book": doc.metadata["book"],
|
88 |
+
"chapter": doc.metadata["chapter"],
|
89 |
+
"verse": doc.metadata["verse"]
|
90 |
+
}
|
91 |
+
)
|
92 |
+
for embedding, doc in zip(embeddings, documents)
|
93 |
+
]
|
94 |
+
client.upsert(collection_name=collection_name, points=points)
|
95 |
|
96 |
+
# Cached embedder
|
97 |
+
safe_namespace = "AIE5_BibleStudyTool"
|
98 |
+
store = LocalFileStore("./cache/")
|
99 |
+
cached_embedder = CacheBackedEmbeddings.from_bytes_store(
|
100 |
+
huggingface_embeddings, store, namespace=safe_namespace, batch_size=32
|
101 |
+
)
|
|
|
102 |
|
103 |
+
# Retrieval functions (unchanged from original)
|
104 |
+
def parse_verse_reference(ref: str):
|
105 |
+
match = re.match(r"(\w+(?:\s\w+)?)\s(\d+):([\d,-]+)", ref)
|
106 |
+
if not match:
|
107 |
+
return None
|
108 |
+
book, chapter, verse_part = match.groups()
|
109 |
+
chapter = int(chapter)
|
110 |
+
verses = []
|
111 |
+
for part in verse_part.split(','):
|
112 |
+
if '-' in part:
|
113 |
+
start, end = map(int, part.split('-'))
|
114 |
+
verses.extend(range(start, end + 1))
|
115 |
+
else:
|
116 |
+
verses.append(int(part))
|
117 |
+
return book, chapter, verses
|
118 |
+
|
119 |
+
def retrieve_verse_content(verse_range: str, client: QdrantClient):
|
120 |
+
parsed = parse_verse_reference(verse_range)
|
121 |
+
if not parsed:
|
122 |
+
return "Invalid verse range format."
|
123 |
+
book, chapter, verses = parsed
|
124 |
+
filter = Filter(
|
125 |
+
must=[
|
126 |
+
FieldCondition(key="book", match=MatchValue(value=book)),
|
127 |
+
FieldCondition(key="chapter", match=MatchValue(value=chapter)),
|
128 |
+
FieldCondition(key="verse", match=MatchAny(any=verses))
|
129 |
+
]
|
130 |
+
)
|
131 |
+
search_result = client.scroll(
|
132 |
+
collection_name=collection_name,
|
133 |
+
scroll_filter=filter,
|
134 |
+
limit=len(verses)
|
135 |
+
)
|
136 |
+
if not search_result[0]:
|
137 |
+
return "No verses found for the specified range."
|
138 |
+
sorted_points = sorted(search_result[0], key=lambda p: p.payload["verse"])
|
139 |
+
docs = [
|
140 |
+
Document(
|
141 |
+
page_content=p.payload["text"],
|
142 |
+
metadata=p.payload
|
143 |
+
)
|
144 |
+
for p in sorted_points
|
145 |
+
]
|
146 |
+
return docs
|
147 |
+
|
148 |
+
def retrieve_documents(question: str, collection_name: str, client: QdrantClient):
|
149 |
+
reference_match = re.search(r"(\w+)\s?(\d+):\s?([\d,-]+)", question)
|
150 |
+
if reference_match:
|
151 |
+
verse_range = reference_match.group(1) + ' ' + reference_match.group(2) + ':' + reference_match.group(3)
|
152 |
+
return retrieve_verse_content(verse_range, client)
|
153 |
+
else:
|
154 |
+
query_vector = cached_embedder.embed_query(question)
|
155 |
+
search_result = client.query_points(
|
156 |
+
collection_name=collection_name,
|
157 |
+
query=query_vector,
|
158 |
+
limit=5,
|
159 |
+
with_payload=True
|
160 |
+
).points
|
161 |
+
if search_result:
|
162 |
+
return [
|
163 |
+
Document(
|
164 |
+
page_content=point.payload["text"],
|
165 |
+
metadata=point.payload
|
166 |
+
)
|
167 |
+
for point in search_result
|
168 |
+
]
|
169 |
+
return "No relevant documents found."
|
170 |
+
|
171 |
+
# RAG setup (unchanged from original)
|
172 |
RAG_PROMPT = """\
|
173 |
You are a helpful assistant who answers questions based on provided context. You must only use the provided context, and cannot use your own knowledge.
|
174 |
|
|
|
180 |
"""
|
181 |
rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT)
|
182 |
|
183 |
+
from langchain_openai import ChatOpenAI
|
184 |
+
from langchain.chat_models import init_chat_model
|
185 |
+
from langchain_core.rate_limiters import InMemoryRateLimiter
|
186 |
|
|
|
187 |
rate_limiter = InMemoryRateLimiter(
|
188 |
+
requests_per_second=1,
|
189 |
+
check_every_n_seconds=0.1,
|
190 |
+
max_bucket_size=10,
|
191 |
)
|
|
|
192 |
|
193 |
+
chat_model = init_chat_model("gpt-4o-mini", rate_limiter=rate_limiter)
|
194 |
+
|
195 |
+
def create_retriever_runnable(collection_name: str, client: QdrantClient) -> RunnableLambda:
|
196 |
+
return RunnableLambda(lambda question: retrieve_documents(question, collection_name, client))
|
197 |
|
198 |
+
retrieval_runnable = create_retriever_runnable(collection_name, client)
|
|
|
|
|
|
|
|
|
199 |
|
200 |
+
def format_docs(docs):
|
201 |
+
if isinstance(docs, str):
|
202 |
+
return docs
|
203 |
+
return "\n\n".join(f"Genesis {doc.metadata['chapter']}:{doc.metadata['verse']} - {doc.page_content}" for doc in docs)
|
|
|
204 |
|
205 |
+
rag_chain = (
|
206 |
+
{"context": retrieval_runnable | RunnableLambda(format_docs), "question": RunnablePassthrough()}
|
207 |
+
| RunnablePassthrough.assign(response=rag_prompt | chat_model | StrOutputParser())
|
208 |
+
)
|
209 |
|
210 |
+
# Tools
|
211 |
+
def format_contexts(docs):
|
212 |
+
return "\n\n".join(docs) if isinstance(docs, list) else docs
|
213 |
|
214 |
@tool
|
215 |
+
def ai_rag_tool(question: str):
|
216 |
+
"""Useful for when you need to answer questions about Bible"""
|
217 |
+
response = rag_chain.invoke(question)
|
218 |
return {
|
219 |
"message": [HumanMessage(content=response["response"])],
|
220 |
+
"context": format_contexts(response["context"])
|
221 |
}
|
222 |
|
223 |
+
tavily_tool = TavilySearchResults(max_results=5)
|
224 |
+
|
225 |
+
def _generate_quiz_question(verse_range: str, client: QdrantClient):
|
226 |
+
docs = retrieve_verse_content(verse_range, client)
|
227 |
+
if isinstance(docs, str):
|
228 |
+
return {"error": docs}
|
229 |
+
verse_content = "\n".join(
|
230 |
+
f"{doc.metadata['book']} {doc.metadata['chapter']}:{doc.metadata['verse']} - {doc.page_content}"
|
231 |
+
for doc in docs
|
232 |
+
)
|
233 |
+
quiz_prompt = ChatPromptTemplate.from_template(
|
234 |
+
"Based on the following Bible verse(s), generate a multiple-choice quiz question with 4 options (A, B, C, D) "
|
235 |
+
"and indicate the correct answer:\n\n"
|
236 |
+
"{verse_content}\n\n"
|
237 |
+
"Format your response as follows:\n"
|
238 |
+
"Question: [Your question here]\n"
|
239 |
+
"A: [Option A]\n"
|
240 |
+
"B: [Option B]\n"
|
241 |
+
"C: [Option C]\n"
|
242 |
+
"D: [Option D]\n"
|
243 |
+
"Correct Answer: [Letter of correct answer]\n"
|
244 |
+
"Explanation: [Brief explanation of why the answer is correct]\n"
|
245 |
+
)
|
246 |
+
response = (quiz_prompt | chat_model).invoke({"verse_content": verse_content})
|
247 |
+
response_text = response.content.strip()
|
248 |
+
lines = response_text.split("\n")
|
249 |
+
question = ""
|
250 |
+
options = {}
|
251 |
+
correct_answer = ""
|
252 |
+
explanation = ""
|
253 |
+
for line in lines:
|
254 |
+
line = line.strip()
|
255 |
+
if line.startswith("Question:"):
|
256 |
+
question = line[len("Question:"):].strip()
|
257 |
+
elif line.startswith(("A:", "B:", "C:", "D:")):
|
258 |
+
key, value = line.split(":", 1)
|
259 |
+
options[key.strip()] = value.strip()
|
260 |
+
elif line.startswith("Correct Answer:"):
|
261 |
+
correct_answer = line[len("Correct Answer:"):].strip()
|
262 |
+
elif line.startswith("Explanation:"):
|
263 |
+
explanation = line[len("Explanation:"):].strip()
|
264 |
+
return {
|
265 |
+
"quiz_question": question,
|
266 |
+
"options": options,
|
267 |
+
"correct_answer": correct_answer,
|
268 |
+
"explanation": explanation,
|
269 |
+
"verse_range": verse_range,
|
270 |
+
"verse_content": verse_content
|
271 |
+
}
|
272 |
|
273 |
+
generate_quiz_question_tool = partial(_generate_quiz_question, client=client)
|
274 |
+
|
275 |
+
@tool
|
276 |
+
def generate_quiz_question(verse_range: str):
|
277 |
+
"""Generate a quiz question based on the content of the specified verse range."""
|
278 |
+
quiz_data = generate_quiz_question_tool(verse_range)
|
279 |
+
return json.dumps(quiz_data)
|
280 |
|
281 |
+
tool_belt = [ai_rag_tool, tavily_tool, generate_quiz_question]
|
282 |
|
283 |
+
# LLM for agent reasoning
|
284 |
+
llm = init_chat_model("gpt-4o", temperature=0, rate_limiter=rate_limiter)
|
285 |
+
llm_with_tools = llm.bind_tools(tool_belt)
|
286 |
|
287 |
+
# Define the state
|
288 |
class AgentState(TypedDict):
|
289 |
messages: Annotated[list[AnyMessage], add_messages]
|
290 |
+
in_quiz: bool
|
291 |
+
quiz_question: Optional[dict]
|
292 |
+
verse_range: Optional[str]
|
293 |
+
quiz_score: int
|
294 |
+
quiz_total: int
|
295 |
+
waiting_for_answer: bool
|
296 |
+
|
297 |
+
# System message
|
298 |
+
system_message = SystemMessage(content="""You are a Bible study assistant. You can answer questions about the Bible, search the internet for related information, or generate quiz questions based on specific verse ranges.
|
299 |
+
|
300 |
+
- Use the 'ai_rag_tool' to answer questions about the Bible.
|
301 |
+
- Use the 'tavily_tool' to search the internet for additional information.
|
302 |
+
- Use the 'generate_quiz_question' tool when the user requests to start a quiz on a specific verse range, such as 'start quiz on Genesis 1:1-10'.
|
303 |
+
|
304 |
+
When the user requests a quiz, extract the verse range from their message and pass it to the 'generate_quiz_question' tool.""")
|
305 |
+
|
306 |
+
|
307 |
+
from typing import Optional
|
308 |
+
from typing_extensions import TypedDict
|
309 |
+
from langgraph.graph.message import AnyMessage, add_messages
|
310 |
+
from typing import Annotated
|
311 |
|
312 |
|
313 |
def call_mode(state):
|
314 |
+
last_message = state["messages"][-1]
|
315 |
+
|
316 |
+
if state.get("in_quiz", False):
|
317 |
+
if state.get("waiting_for_answer", False):
|
318 |
+
# Process the user's answer
|
319 |
+
quiz_data = state["quiz_question"]
|
320 |
+
user_answer = last_message.content.strip().upper()
|
321 |
+
correct_answer = quiz_data["correct_answer"]
|
322 |
+
new_quiz_total = state["quiz_total"] + 1
|
323 |
+
if user_answer == correct_answer:
|
324 |
+
new_quiz_score = state["quiz_score"] + 1
|
325 |
+
feedback = f"Correct! {quiz_data['explanation']}"
|
326 |
+
else:
|
327 |
+
new_quiz_score = state["quiz_score"]
|
328 |
+
feedback = f"Incorrect. The correct answer is {correct_answer}. {quiz_data['explanation']}"
|
329 |
+
return {
|
330 |
+
"messages": [
|
331 |
+
AIMessage(content=feedback),
|
332 |
+
AIMessage(content="Would you like another question? Type 'Yes' to continue or 'No' to end the quiz.")
|
333 |
+
],
|
334 |
+
"quiz_total": new_quiz_total,
|
335 |
+
"quiz_score": new_quiz_score,
|
336 |
+
"waiting_for_answer": False,
|
337 |
+
"quiz_question": state["quiz_question"],
|
338 |
+
"in_quiz": True,
|
339 |
+
"verse_range": state["verse_range"]
|
340 |
+
}
|
341 |
+
else:
|
342 |
+
# Handle the user's decision to continue or stop the quiz
|
343 |
+
user_input = last_message.content.strip().lower()
|
344 |
+
if user_input == "yes":
|
345 |
+
# Generate a new quiz question
|
346 |
+
verse_range = state["verse_range"]
|
347 |
+
quiz_data_str = generate_quiz_question(verse_range)
|
348 |
+
quiz_data = json.loads(quiz_data_str)
|
349 |
+
question = quiz_data["quiz_question"]
|
350 |
+
options = "\n".join([f"{k}: {v}" for k, v in quiz_data["options"].items()])
|
351 |
+
verse_content = quiz_data["verse_content"]
|
352 |
+
message_to_user = (
|
353 |
+
f"Based on the following verse(s):\n\n{verse_content}\n\n"
|
354 |
+
f"Here's your quiz question:\n\n{question}\n\n{options}\n\n"
|
355 |
+
"Please select your answer (A, B, C, or D)."
|
356 |
+
)
|
357 |
+
return {
|
358 |
+
"messages": [AIMessage(content=message_to_user)],
|
359 |
+
"quiz_question": quiz_data,
|
360 |
+
"waiting_for_answer": True,
|
361 |
+
"quiz_total": state["quiz_total"],
|
362 |
+
"quiz_score": state["quiz_score"],
|
363 |
+
"in_quiz": True,
|
364 |
+
"verse_range": state["verse_range"]
|
365 |
+
}
|
366 |
+
elif user_input == "no":
|
367 |
+
# End the quiz and provide a summary
|
368 |
+
score = state["quiz_score"]
|
369 |
+
total = state["quiz_total"]
|
370 |
+
continue_message = "Ask me anything about Genesis or type 'start quiz on <verse range>' (e.g., 'start quiz on Genesis 1:1-5') for a trivia challenge."
|
371 |
+
if total > 0:
|
372 |
+
percentage = (score / total) * 100
|
373 |
+
if percentage == 100:
|
374 |
+
feedback = "Excellent! You got all questions correct. Please continue your Bible study!"
|
375 |
+
elif percentage >= 80:
|
376 |
+
feedback = "Great job! You have a strong understanding. Please continue your Bible study!"
|
377 |
+
elif percentage >= 50:
|
378 |
+
feedback = "Good effort! Keep practicing to improve. Please continue your Bible study!"
|
379 |
+
else:
|
380 |
+
feedback = "Don’t worry, keep your Bible studying and you’ll get better!"
|
381 |
+
summary = f"You got {score} out of {total} questions correct. {feedback} \n\n {continue_message}"
|
382 |
+
else:
|
383 |
+
summary = "No questions were attempted."
|
384 |
+
return {
|
385 |
+
"messages": [AIMessage(content=summary)],
|
386 |
+
"in_quiz": False,
|
387 |
+
"quiz_question": None,
|
388 |
+
"verse_range": None,
|
389 |
+
"quiz_score": 0,
|
390 |
+
"quiz_total": 0,
|
391 |
+
"waiting_for_answer": False
|
392 |
+
}
|
393 |
+
else:
|
394 |
+
# Handle invalid input
|
395 |
+
return {
|
396 |
+
"messages": [AIMessage(content="Please type 'Yes' to continue or 'No' to end the quiz.")],
|
397 |
+
"quiz_total": state["quiz_total"],
|
398 |
+
"quiz_score": state["quiz_score"],
|
399 |
+
"waiting_for_answer": False,
|
400 |
+
"quiz_question": state["quiz_question"],
|
401 |
+
"in_quiz": True,
|
402 |
+
"verse_range": state["verse_range"]
|
403 |
+
}
|
404 |
+
|
405 |
+
# Handle starting the quiz or other tool calls
|
406 |
+
if len(state["messages"]) >= 2 and isinstance(last_message, ToolMessage):
|
407 |
+
prev_message = state["messages"][-2]
|
408 |
+
if isinstance(prev_message, AIMessage) and prev_message.tool_calls:
|
409 |
+
tool_call = prev_message.tool_calls[0]
|
410 |
+
if tool_call["name"] == "generate_quiz_question":
|
411 |
+
# Start the quiz
|
412 |
+
quiz_data_str = last_message.content
|
413 |
+
quiz_data = json.loads(quiz_data_str)
|
414 |
+
verse_range = quiz_data["verse_range"]
|
415 |
+
question = quiz_data["quiz_question"]
|
416 |
+
options = "\n".join([f"{k}: {v}" for k, v in quiz_data["options"].items()])
|
417 |
+
verse_content = quiz_data["verse_content"]
|
418 |
+
message_to_user = (
|
419 |
+
f"Based on the following verse(s):\n\n{verse_content}\n\n"
|
420 |
+
f"Here's your quiz question:\n\n{question}\n\n{options}\n\n"
|
421 |
+
"Please select your answer (A, B, C, or D)."
|
422 |
+
)
|
423 |
+
return {
|
424 |
+
"messages": [AIMessage(content=message_to_user)],
|
425 |
+
"in_quiz": True,
|
426 |
+
"verse_range": verse_range,
|
427 |
+
"quiz_score": 0,
|
428 |
+
"quiz_total": 0,
|
429 |
+
"quiz_question": quiz_data,
|
430 |
+
"waiting_for_answer": True
|
431 |
+
}
|
432 |
+
|
433 |
+
# Process regular questions or commands
|
434 |
+
messages = [system_message] + state["messages"]
|
435 |
response = llm_with_tools.invoke(messages)
|
436 |
+
return {"messages": [response]}
|
437 |
+
|
|
|
|
|
438 |
|
439 |
tool_node = ToolNode(tool_belt)
|
440 |
|
441 |
def should_continue(state):
|
442 |
last_message = state["messages"][-1]
|
|
|
443 |
if last_message.tool_calls:
|
444 |
return "action"
|
|
|
445 |
return END
|
446 |
|
447 |
+
# Build the graph
|
448 |
uncompiled_graph = StateGraph(AgentState)
|
|
|
449 |
uncompiled_graph.add_node("agent", call_mode)
|
450 |
uncompiled_graph.add_node("action", tool_node)
|
|
|
451 |
uncompiled_graph.set_entry_point("agent")
|
452 |
+
uncompiled_graph.add_conditional_edges("agent", should_continue)
|
|
|
|
|
|
|
|
|
|
|
453 |
uncompiled_graph.add_edge("action", "agent")
|
|
|
|
|
454 |
compiled_graph = uncompiled_graph.compile()
|
455 |
|
456 |
+
# Chainlit integration
|
457 |
+
import chainlit as cl
|
458 |
+
from langchain_core.messages import SystemMessage
|
459 |
|
|
|
460 |
@cl.on_chat_start
|
461 |
+
async def start():
|
462 |
+
system_message = SystemMessage(content="Welcome to the Bible Study Tool!")
|
463 |
+
initial_state = {
|
464 |
+
"messages": [system_message],
|
465 |
+
"in_quiz": False,
|
466 |
+
"quiz_question": None,
|
467 |
+
"verse_range": None,
|
468 |
+
"quiz_score": 0,
|
469 |
+
"quiz_total": 0,
|
470 |
+
"waiting_for_answer": False
|
471 |
+
}
|
472 |
+
cl.user_session.set("state", initial_state)
|
473 |
+
await cl.Message(content="Welcome to the Bible Study Tool! Ask me anything about Genesis or type 'start quiz on <verse range>' (e.g., 'start quiz on Genesis 1:1-5') for a trivia challenge.").send()
|
474 |
|
475 |
|
476 |
@cl.on_message
|
477 |
+
async def main(message: cl.Message):
|
478 |
+
state = cl.user_session.get("state")
|
479 |
+
current_messages = len(state["messages"])
|
480 |
+
state["messages"].append(HumanMessage(content=message.content))
|
481 |
+
result = compiled_graph.invoke(state)
|
482 |
+
cl.user_session.set("state", result)
|
483 |
+
new_messages = result["messages"][current_messages + 1:]
|
484 |
+
for msg in new_messages:
|
485 |
+
if isinstance(msg, AIMessage):
|
486 |
+
await cl.Message(content=msg.content).send()
|
pyproject.toml
CHANGED
@@ -17,4 +17,5 @@ dependencies = [
|
|
17 |
"unstructured>=0.14.8",
|
18 |
"langchain-huggingface>=0.1.2",
|
19 |
"websockets>=15.0",
|
|
|
20 |
]
|
|
|
17 |
"unstructured>=0.14.8",
|
18 |
"langchain-huggingface>=0.1.2",
|
19 |
"websockets>=15.0",
|
20 |
+
"rank-bm25>=0.2.2",
|
21 |
]
|
uv.lock
CHANGED
@@ -224,6 +224,7 @@ dependencies = [
|
|
224 |
{ name = "langchain-qdrant" },
|
225 |
{ name = "langgraph" },
|
226 |
{ name = "pandas" },
|
|
|
227 |
{ name = "unstructured" },
|
228 |
{ name = "websockets" },
|
229 |
]
|
@@ -240,6 +241,7 @@ requires-dist = [
|
|
240 |
{ name = "langchain-qdrant", specifier = ">=0.2.0" },
|
241 |
{ name = "langgraph", specifier = ">=0.2.67" },
|
242 |
{ name = "pandas", specifier = ">=2.2.3" },
|
|
|
243 |
{ name = "unstructured", specifier = ">=0.14.8" },
|
244 |
{ name = "websockets", specifier = ">=15.0" },
|
245 |
]
|
@@ -2529,6 +2531,18 @@ wheels = [
|
|
2529 |
{ url = "https://files.pythonhosted.org/packages/5f/26/89ebaee5fcbd99bf1c0a627a9447b440118b2d31dea423d074cb0481be5c/qdrant_client-1.13.2-py3-none-any.whl", hash = "sha256:db97e759bd3f8d483a383984ba4c2a158eef56f2188d83df7771591d43de2201", size = 306637 },
|
2530 |
]
|
2531 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2532 |
[[package]]
|
2533 |
name = "rapidfuzz"
|
2534 |
version = "3.12.1"
|
|
|
224 |
{ name = "langchain-qdrant" },
|
225 |
{ name = "langgraph" },
|
226 |
{ name = "pandas" },
|
227 |
+
{ name = "rank-bm25" },
|
228 |
{ name = "unstructured" },
|
229 |
{ name = "websockets" },
|
230 |
]
|
|
|
241 |
{ name = "langchain-qdrant", specifier = ">=0.2.0" },
|
242 |
{ name = "langgraph", specifier = ">=0.2.67" },
|
243 |
{ name = "pandas", specifier = ">=2.2.3" },
|
244 |
+
{ name = "rank-bm25", specifier = ">=0.2.2" },
|
245 |
{ name = "unstructured", specifier = ">=0.14.8" },
|
246 |
{ name = "websockets", specifier = ">=15.0" },
|
247 |
]
|
|
|
2531 |
{ url = "https://files.pythonhosted.org/packages/5f/26/89ebaee5fcbd99bf1c0a627a9447b440118b2d31dea423d074cb0481be5c/qdrant_client-1.13.2-py3-none-any.whl", hash = "sha256:db97e759bd3f8d483a383984ba4c2a158eef56f2188d83df7771591d43de2201", size = 306637 },
|
2532 |
]
|
2533 |
|
2534 |
+
[[package]]
|
2535 |
+
name = "rank-bm25"
|
2536 |
+
version = "0.2.2"
|
2537 |
+
source = { registry = "https://pypi.org/simple" }
|
2538 |
+
dependencies = [
|
2539 |
+
{ name = "numpy" },
|
2540 |
+
]
|
2541 |
+
sdist = { url = "https://files.pythonhosted.org/packages/fc/0a/f9579384aa017d8b4c15613f86954b92a95a93d641cc849182467cf0bb3b/rank_bm25-0.2.2.tar.gz", hash = "sha256:096ccef76f8188563419aaf384a02f0ea459503fdf77901378d4fd9d87e5e51d", size = 8347 }
|
2542 |
+
wheels = [
|
2543 |
+
{ url = "https://files.pythonhosted.org/packages/2a/21/f691fb2613100a62b3fa91e9988c991e9ca5b89ea31c0d3152a3210344f9/rank_bm25-0.2.2-py3-none-any.whl", hash = "sha256:7bd4a95571adadfc271746fa146a4bcfd89c0cf731e49c3d1ad863290adbe8ae", size = 8584 },
|
2544 |
+
]
|
2545 |
+
|
2546 |
[[package]]
|
2547 |
name = "rapidfuzz"
|
2548 |
version = "3.12.1"
|