import os import gradio as gr import json import logging import torch from PIL import Image import spaces from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images from diffusers.utils import load_image from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download import copy import random import time import subprocess # Make sure this line is present! # --- Install huggingface_hub[cli] --- subprocess.run("pip install huggingface_hub[cli]", shell=True, check=True) # --- Authenticate to Hugging Face --- # Try to get the token from the environment; if not found, prompt for it manually. from huggingface_hub import login, hf_hub_download, HfFileSystem, ModelCard, snapshot_download hf_token = os.environ.get("HF_TOKEN") if not hf_token: hf_token = input("Enter your Hugging Face token: ").strip() # Optionally, you can set the token as an environment variable for the remainder of the session: os.environ["HF_TOKEN"] = hf_token if hf_token: login(hf_token) print("Successfully authenticated to Hugging Face.") else: print("No token provided. Some features may not work without authentication.") # Load LoRAs from JSON file with open('loras.json', 'r') as f: loras = json.load(f) # Create a list of options for the LoRAs. # You could use the index or a descriptive label. lora_options = [f"{idx}: {lora['title']}" for idx, lora in enumerate(loras)] # Create a CheckboxGroup that returns a list of selected options (as strings) selected_lora_indices = gr.CheckboxGroup(choices=lora_options, label="Select LoRAs to load", value=[]) # Initialize the base model dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" base_model = "black-forest-labs/FLUX.1-dev" taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device) pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device) pipe_i2i = AutoPipelineForImage2Image.from_pretrained(base_model, vae=good_vae, transformer=pipe.transformer, text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer, text_encoder_2=pipe.text_encoder_2, tokenizer_2=pipe.tokenizer_2, torch_dtype=dtype ) # Disable the safety (censor) mechanism pipe.safety_checker = lambda images, clip_input, **kwargs: (images, False) pipe_i2i.safety_checker = lambda images, clip_input, **kwargs: (images, False) MAX_SEED = 2**32-1 pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) class calculateDuration: def __init__(self, activity_name=""): self.activity_name = activity_name def __enter__(self): self.start_time = time.time() return self def __exit__(self, exc_type, exc_value, traceback): self.end_time = time.time() self.elapsed_time = self.end_time - self.start_time if self.activity_name: print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") else: print(f"Elapsed time: {self.elapsed_time:.6f} seconds") def parse_selected_indices(selected_options): indices = [] for option in selected_options: try: index = int(option.split(":")[0]) indices.append(index) except Exception: continue return indices def update_selection(evt: gr.SelectData, width, height): selected_lora = loras[evt.index] new_placeholder = f"Type a prompt for {selected_lora['title']}" lora_repo = selected_lora["repo"] updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" if "aspect" in selected_lora: if selected_lora["aspect"] == "portrait": width = 768 height = 1024 elif selected_lora["aspect"] == "landscape": width = 1024 height = 768 else: width = 1024 height = 1024 return ( gr.update(placeholder=new_placeholder), updated_text, evt.index, width, height, ) @spaces.GPU(duration=70) def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress): pipe.to("cuda") generator = torch.Generator(device="cuda").manual_seed(seed) with calculateDuration("Generating image"): # Generate image for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( prompt=prompt_mash, num_inference_steps=steps, guidance_scale=cfg_scale, width=width, height=height, generator=generator, joint_attention_kwargs={"scale": lora_scale}, output_type="pil", good_vae=good_vae, ): yield img def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, lora_scale, seed): generator = torch.Generator(device="cuda").manual_seed(seed) pipe_i2i.to("cuda") image_input = load_image(image_input_path) final_image = pipe_i2i( prompt=prompt_mash, image=image_input, strength=image_strength, num_inference_steps=steps, guidance_scale=cfg_scale, width=width, height=height, generator=generator, joint_attention_kwargs={"scale": lora_scale}, output_type="pil", ).images[0] return final_image @spaces.GPU(duration=70) def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices_json, selected_weights_json, randomize_seed, seed, width, height, global_lora_scale, progress=gr.Progress(track_tqdm=True)): import json # Parse the JSON strings selected_indices = json.loads(selected_indices_json) selected_weights = json.loads(selected_weights_json) if selected_weights_json else {} if not selected_indices: raise gr.Error("You must select at least one LoRA before proceeding.") # Combine trigger words from all selected LoRAs prompt_mash = prompt for idx in selected_indices: selected_lora = loras[idx] if "trigger_word" in selected_lora and selected_lora["trigger_word"]: prompt_mash = f"{selected_lora['trigger_word']} {prompt_mash}" with calculateDuration("Unloading LoRA"): pipe.unload_lora_weights() pipe_i2i.unload_lora_weights() with calculateDuration("Loading LoRA weights"): pipe_to_use = pipe_i2i if image_input is not None else pipe for idx in selected_indices: selected_lora = loras[idx] weight_name = selected_lora.get("weights", None) # Get the individual weight for this LoRA from the selected_weights mapping. # If not found, default to 0.95. lora_weight = selected_weights.get(str(idx), 0.95) pipe_to_use.load_lora_weights( selected_lora["repo"], weight_name=weight_name, low_cpu_mem_usage=True, lora_weight=lora_weight # This parameter should be supported by your load function. ) with calculateDuration("Randomizing seed"): if randomize_seed: seed = random.randint(0, 2**32-1) if image_input is not None: final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, global_lora_scale, seed) yield final_image, seed, gr.update(visible=False) else: image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, global_lora_scale, progress) final_image = None step_counter = 0 for image in image_generator: step_counter += 1 final_image = image progress_bar = f'
' yield image, seed, gr.update(value=progress_bar, visible=True) yield final_image, seed, gr.update(value=progress_bar, visible=False) def get_huggingface_safetensors(link): split_link = link.split("/") if(len(split_link) == 2): model_card = ModelCard.load(link) base_model = model_card.data.get("base_model") print(base_model) if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")): raise Exception("Not a FLUX LoRA!") image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) trigger_word = model_card.data.get("instance_prompt", "") image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None fs = HfFileSystem() try: list_of_files = fs.ls(link, detail=False) for file in list_of_files: if(file.endswith(".safetensors")): safetensors_name = file.split("/")[-1] if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))): image_elements = file.split("/") image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}" except Exception as e: print(e) gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") return split_link[1], link, safetensors_name, trigger_word, image_url def check_custom_model(link): if(link.startswith("https://")): if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")): link_split = link.split("huggingface.co/") return get_huggingface_safetensors(link_split[1]) else: return get_huggingface_safetensors(link) def add_custom_lora(custom_lora): global loras if(custom_lora): try: title, repo, path, trigger_word, image = check_custom_model(custom_lora) print(f"Loaded custom LoRA: {repo}") card = f'''
Loaded custom LoRA:

{title}

{"Using: "+trigger_word+" as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}
''' existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None) if(not existing_item_index): new_item = { "image": image, "title": title, "repo": repo, "weights": path, "trigger_word": trigger_word } print(new_item) existing_item_index = len(loras) loras.append(new_item) return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word except Exception as e: gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-FLUX LoRA") return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-FLUX LoRA"), gr.update(visible=True), gr.update(), "", None, "" else: return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" def remove_custom_lora(): return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" run_lora.zerogpu = True css = ''' #gen_btn { height: 100%; } #gen_column { align-self: stretch; } #title { text-align: center; } #title h1 { font-size: 3em; display: inline-flex; align-items: center; } #title img { width: 100px; margin-right: 0.5em; } #lora_list { background: var(--block-background-fill); padding: 0 1em .3em; font-size: 90%; } .card_internal { display: flex; height: 100px; margin-top: .5em; } .card_internal img { margin-right: 1em; } .styler { --form-gap-width: 0px !important; } #progress { height: 30px; } .progress-container { width: 100%; height: 30px; background-color: #f0f0f0; border-radius: 15px; overflow: hidden; margin-bottom: 20px; } .progress-bar { height: 100%; background-color: #4f46e5; width: calc(var(--current) / var(--total) * 100%); transition: width 0.5s ease-in-out; } ''' font = [gr.themes.GoogleFont("Source Sans Pro"), "Arial", "sans-serif"] with gr.Blocks(theme=gr.themes.Soft(font=font), css=css, delete_cache=(60, 60)) as app: title = gr.HTML( """

LoRA FLUX LoRA Kayte's Space

""", elem_id="title", ) # Hidden textboxes to store the JSON outputs: selected_indices_hidden = gr.Textbox(value="[]", visible=False) selected_weights_hidden = gr.Textbox(value="{}", visible=False) with gr.Row(): with gr.Column(scale=3): prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA") with gr.Column(scale=1, elem_id="gen_column"): generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") with gr.Row(): with gr.Column(): selected_info = gr.Markdown("") # Build a custom layout for LoRA selection. lora_selection_container = gr.Column() # We'll collect checkbox and slider components in lists. lora_checkbox_list = [] lora_slider_list = [] for idx, lora in enumerate(loras): with gr.Row(): gr.Image(label=lora["title"], height=100) checkbox = gr.Checkbox(label="Select", value=False, elem_id=f"lora_checkbox_{idx}") slider = gr.Slider(label="Weight", minimum=0, maximum=3, step=0.01, value=0.95, elem_id=f"lora_weight_{idx}") lora_checkbox_list.append(checkbox) lora_slider_list.append(slider) gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list") with gr.Column(): progress_bar = gr.Markdown(elem_id="progress", visible=False) result = gr.Image(label="Generated Image") with gr.Row(): with gr.Accordion("Advanced Settings", open=False): with gr.Row(): input_image = gr.Image(label="Input image", type="filepath") image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75) with gr.Column(): with gr.Row(): cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5) steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) with gr.Row(): width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) with gr.Row(): randomize_seed = gr.Checkbox(True, label="Randomize seed") seed = gr.Slider(label="Seed", minimum=0, maximum=2**32-1, step=1, value=0, randomize=True) lora_scale = gr.Slider(label="Global LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95) # Function to combine checkbox selections into a JSON list of indices. def combine_selections(*checkbox_values): selected_indices = [i for i, v in enumerate(checkbox_values) if v] return json.dumps(selected_indices) # Function to combine all slider values into a JSON dictionary mapping index to weight. def combine_weights(*slider_values): weights = {str(i): v for i, v in enumerate(slider_values)} return json.dumps(weights) # Chain the updates when the Generate button is clicked: # First, update the checkbox hidden state, then update the slider hidden state, then call run_lora. generate_button.click( combine_selections, inputs=lora_checkbox_list, outputs=selected_indices_hidden ).then( combine_weights, inputs=lora_slider_list, outputs=selected_weights_hidden ).then( run_lora, inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices_hidden, selected_weights_hidden, randomize_seed, seed, width, height, lora_scale], outputs=[result, seed, progress_bar] ) # Update the selected_info display when the selected_indices_hidden changes. def update_info(selected_json): selected_indices = json.loads(selected_json) if selected_indices: info = "Selected LoRAs: " + ", ".join([loras[i]["title"] for i in selected_indices]) else: info = "No LoRAs selected." return info selected_indices_hidden.change( update_info, inputs=selected_indices_hidden, outputs=selected_info ) app.queue() app.launch()