|
import os |
|
import gradio as gr |
|
import json |
|
import logging |
|
import torch |
|
from PIL import Image |
|
import spaces |
|
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image |
|
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images |
|
from diffusers.utils import load_image |
|
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download |
|
import copy |
|
import random |
|
import time |
|
import subprocess |
|
|
|
|
|
|
|
subprocess.run("pip install huggingface_hub[cli]", shell=True, check=True) |
|
|
|
|
|
|
|
from huggingface_hub import login, hf_hub_download, HfFileSystem, ModelCard, snapshot_download |
|
|
|
hf_token = os.environ.get("HF_TOKEN") |
|
if not hf_token: |
|
hf_token = input("Enter your Hugging Face token: ").strip() |
|
|
|
os.environ["HF_TOKEN"] = hf_token |
|
|
|
if hf_token: |
|
login(hf_token) |
|
print("Successfully authenticated to Hugging Face.") |
|
else: |
|
print("No token provided. Some features may not work without authentication.") |
|
|
|
|
|
|
|
with open('loras.json', 'r') as f: |
|
loras = json.load(f) |
|
|
|
|
|
|
|
lora_options = [f"{idx}: {lora['title']}" for idx, lora in enumerate(loras)] |
|
|
|
|
|
selected_lora_indices = gr.CheckboxGroup(choices=lora_options, label="Select LoRAs to load", value=[]) |
|
|
|
|
|
|
|
dtype = torch.bfloat16 |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
base_model = "black-forest-labs/FLUX.1-dev" |
|
|
|
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) |
|
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device) |
|
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device) |
|
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(base_model, |
|
vae=good_vae, |
|
transformer=pipe.transformer, |
|
text_encoder=pipe.text_encoder, |
|
tokenizer=pipe.tokenizer, |
|
text_encoder_2=pipe.text_encoder_2, |
|
tokenizer_2=pipe.tokenizer_2, |
|
torch_dtype=dtype |
|
) |
|
|
|
|
|
pipe.safety_checker = lambda images, clip_input, **kwargs: (images, False) |
|
pipe_i2i.safety_checker = lambda images, clip_input, **kwargs: (images, False) |
|
|
|
MAX_SEED = 2**32-1 |
|
|
|
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) |
|
|
|
class calculateDuration: |
|
def __init__(self, activity_name=""): |
|
self.activity_name = activity_name |
|
|
|
def __enter__(self): |
|
self.start_time = time.time() |
|
return self |
|
|
|
def __exit__(self, exc_type, exc_value, traceback): |
|
self.end_time = time.time() |
|
self.elapsed_time = self.end_time - self.start_time |
|
if self.activity_name: |
|
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") |
|
else: |
|
print(f"Elapsed time: {self.elapsed_time:.6f} seconds") |
|
|
|
def parse_selected_indices(selected_options): |
|
indices = [] |
|
for option in selected_options: |
|
try: |
|
index = int(option.split(":")[0]) |
|
indices.append(index) |
|
except Exception: |
|
continue |
|
return indices |
|
|
|
def update_selection(evt: gr.SelectData, width, height): |
|
selected_lora = loras[evt.index] |
|
new_placeholder = f"Type a prompt for {selected_lora['title']}" |
|
lora_repo = selected_lora["repo"] |
|
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" |
|
if "aspect" in selected_lora: |
|
if selected_lora["aspect"] == "portrait": |
|
width = 768 |
|
height = 1024 |
|
elif selected_lora["aspect"] == "landscape": |
|
width = 1024 |
|
height = 768 |
|
else: |
|
width = 1024 |
|
height = 1024 |
|
return ( |
|
gr.update(placeholder=new_placeholder), |
|
updated_text, |
|
evt.index, |
|
width, |
|
height, |
|
) |
|
|
|
@spaces.GPU(duration=70) |
|
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress): |
|
pipe.to("cuda") |
|
generator = torch.Generator(device="cuda").manual_seed(seed) |
|
with calculateDuration("Generating image"): |
|
|
|
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( |
|
prompt=prompt_mash, |
|
num_inference_steps=steps, |
|
guidance_scale=cfg_scale, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
joint_attention_kwargs={"scale": lora_scale}, |
|
output_type="pil", |
|
good_vae=good_vae, |
|
): |
|
yield img |
|
|
|
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, lora_scale, seed): |
|
generator = torch.Generator(device="cuda").manual_seed(seed) |
|
pipe_i2i.to("cuda") |
|
image_input = load_image(image_input_path) |
|
final_image = pipe_i2i( |
|
prompt=prompt_mash, |
|
image=image_input, |
|
strength=image_strength, |
|
num_inference_steps=steps, |
|
guidance_scale=cfg_scale, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
joint_attention_kwargs={"scale": lora_scale}, |
|
output_type="pil", |
|
).images[0] |
|
return final_image |
|
|
|
@spaces.GPU(duration=70) |
|
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices_json, selected_weights_json, randomize_seed, seed, width, height, global_lora_scale, progress=gr.Progress(track_tqdm=True)): |
|
import json |
|
|
|
selected_indices = json.loads(selected_indices_json) |
|
selected_weights = json.loads(selected_weights_json) if selected_weights_json else {} |
|
|
|
if not selected_indices: |
|
raise gr.Error("You must select at least one LoRA before proceeding.") |
|
|
|
|
|
prompt_mash = prompt |
|
for idx in selected_indices: |
|
selected_lora = loras[idx] |
|
if "trigger_word" in selected_lora and selected_lora["trigger_word"]: |
|
prompt_mash = f"{selected_lora['trigger_word']} {prompt_mash}" |
|
|
|
with calculateDuration("Unloading LoRA"): |
|
pipe.unload_lora_weights() |
|
pipe_i2i.unload_lora_weights() |
|
|
|
with calculateDuration("Loading LoRA weights"): |
|
pipe_to_use = pipe_i2i if image_input is not None else pipe |
|
for idx in selected_indices: |
|
selected_lora = loras[idx] |
|
weight_name = selected_lora.get("weights", None) |
|
|
|
|
|
lora_weight = selected_weights.get(str(idx), 0.95) |
|
pipe_to_use.load_lora_weights( |
|
selected_lora["repo"], |
|
weight_name=weight_name, |
|
low_cpu_mem_usage=True, |
|
lora_weight=lora_weight |
|
) |
|
|
|
with calculateDuration("Randomizing seed"): |
|
if randomize_seed: |
|
seed = random.randint(0, 2**32-1) |
|
|
|
if image_input is not None: |
|
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, global_lora_scale, seed) |
|
yield final_image, seed, gr.update(visible=False) |
|
else: |
|
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, global_lora_scale, progress) |
|
final_image = None |
|
step_counter = 0 |
|
for image in image_generator: |
|
step_counter += 1 |
|
final_image = image |
|
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>' |
|
yield image, seed, gr.update(value=progress_bar, visible=True) |
|
yield final_image, seed, gr.update(value=progress_bar, visible=False) |
|
|
|
|
|
|
|
|
|
def get_huggingface_safetensors(link): |
|
split_link = link.split("/") |
|
if(len(split_link) == 2): |
|
model_card = ModelCard.load(link) |
|
base_model = model_card.data.get("base_model") |
|
print(base_model) |
|
if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")): |
|
raise Exception("Not a FLUX LoRA!") |
|
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) |
|
trigger_word = model_card.data.get("instance_prompt", "") |
|
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None |
|
fs = HfFileSystem() |
|
try: |
|
list_of_files = fs.ls(link, detail=False) |
|
for file in list_of_files: |
|
if(file.endswith(".safetensors")): |
|
safetensors_name = file.split("/")[-1] |
|
if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))): |
|
image_elements = file.split("/") |
|
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}" |
|
except Exception as e: |
|
print(e) |
|
gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") |
|
raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") |
|
return split_link[1], link, safetensors_name, trigger_word, image_url |
|
|
|
def check_custom_model(link): |
|
if(link.startswith("https://")): |
|
if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")): |
|
link_split = link.split("huggingface.co/") |
|
return get_huggingface_safetensors(link_split[1]) |
|
else: |
|
return get_huggingface_safetensors(link) |
|
|
|
def add_custom_lora(custom_lora): |
|
global loras |
|
if(custom_lora): |
|
try: |
|
title, repo, path, trigger_word, image = check_custom_model(custom_lora) |
|
print(f"Loaded custom LoRA: {repo}") |
|
card = f''' |
|
<div class="custom_lora_card"> |
|
<span>Loaded custom LoRA:</span> |
|
<div class="card_internal"> |
|
<img src="{image}" /> |
|
<div> |
|
<h3>{title}</h3> |
|
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small> |
|
</div> |
|
</div> |
|
</div> |
|
''' |
|
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None) |
|
if(not existing_item_index): |
|
new_item = { |
|
"image": image, |
|
"title": title, |
|
"repo": repo, |
|
"weights": path, |
|
"trigger_word": trigger_word |
|
} |
|
print(new_item) |
|
existing_item_index = len(loras) |
|
loras.append(new_item) |
|
|
|
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word |
|
except Exception as e: |
|
gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-FLUX LoRA") |
|
return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-FLUX LoRA"), gr.update(visible=True), gr.update(), "", None, "" |
|
else: |
|
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" |
|
|
|
def remove_custom_lora(): |
|
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" |
|
|
|
run_lora.zerogpu = True |
|
|
|
css = ''' |
|
#gen_btn { height: 100%; } |
|
#gen_column { align-self: stretch; } |
|
#title { text-align: center; } |
|
#title h1 { font-size: 3em; display: inline-flex; align-items: center; } |
|
#title img { width: 100px; margin-right: 0.5em; } |
|
#lora_list { background: var(--block-background-fill); padding: 0 1em .3em; font-size: 90%; } |
|
.card_internal { display: flex; height: 100px; margin-top: .5em; } |
|
.card_internal img { margin-right: 1em; } |
|
.styler { --form-gap-width: 0px !important; } |
|
#progress { height: 30px; } |
|
.progress-container { width: 100%; height: 30px; background-color: #f0f0f0; border-radius: 15px; overflow: hidden; margin-bottom: 20px; } |
|
.progress-bar { height: 100%; background-color: #4f46e5; width: calc(var(--current) / var(--total) * 100%); transition: width 0.5s ease-in-out; } |
|
''' |
|
font = [gr.themes.GoogleFont("Source Sans Pro"), "Arial", "sans-serif"] |
|
|
|
with gr.Blocks(theme=gr.themes.Soft(font=font), css=css, delete_cache=(60, 60)) as app: |
|
title = gr.HTML( |
|
"""<h1><img src="https://huggingface.co/spaces/kayte0342/test/resolve/main/DA4BE61E-A0BD-4254-A1B6-AD3C05D18A9C%20(1).png?download=true" alt="LoRA"> FLUX LoRA Kayte's Space</h1>""", |
|
elem_id="title", |
|
) |
|
|
|
|
|
selected_indices_hidden = gr.Textbox(value="[]", visible=False) |
|
selected_weights_hidden = gr.Textbox(value="{}", visible=False) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA") |
|
with gr.Column(scale=1, elem_id="gen_column"): |
|
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
selected_info = gr.Markdown("") |
|
|
|
lora_selection_container = gr.Column() |
|
|
|
lora_checkbox_list = [] |
|
lora_slider_list = [] |
|
for idx, lora in enumerate(loras): |
|
with gr.Row(): |
|
gr.Image(label=lora["title"], height=100) |
|
checkbox = gr.Checkbox(label="Select", value=False, elem_id=f"lora_checkbox_{idx}") |
|
slider = gr.Slider(label="Weight", minimum=0, maximum=3, step=0.01, value=0.95, elem_id=f"lora_weight_{idx}") |
|
lora_checkbox_list.append(checkbox) |
|
lora_slider_list.append(slider) |
|
gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list") |
|
with gr.Column(): |
|
progress_bar = gr.Markdown(elem_id="progress", visible=False) |
|
result = gr.Image(label="Generated Image") |
|
|
|
with gr.Row(): |
|
with gr.Accordion("Advanced Settings", open=False): |
|
with gr.Row(): |
|
input_image = gr.Image(label="Input image", type="filepath") |
|
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75) |
|
with gr.Column(): |
|
with gr.Row(): |
|
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5) |
|
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) |
|
with gr.Row(): |
|
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) |
|
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) |
|
with gr.Row(): |
|
randomize_seed = gr.Checkbox(True, label="Randomize seed") |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=2**32-1, step=1, value=0, randomize=True) |
|
lora_scale = gr.Slider(label="Global LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95) |
|
|
|
|
|
def combine_selections(*checkbox_values): |
|
selected_indices = [i for i, v in enumerate(checkbox_values) if v] |
|
return json.dumps(selected_indices) |
|
|
|
|
|
def combine_weights(*slider_values): |
|
weights = {str(i): v for i, v in enumerate(slider_values)} |
|
return json.dumps(weights) |
|
|
|
|
|
|
|
generate_button.click( |
|
combine_selections, |
|
inputs=lora_checkbox_list, |
|
outputs=selected_indices_hidden |
|
).then( |
|
combine_weights, |
|
inputs=lora_slider_list, |
|
outputs=selected_weights_hidden |
|
).then( |
|
run_lora, |
|
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices_hidden, selected_weights_hidden, randomize_seed, seed, width, height, lora_scale], |
|
outputs=[result, seed, progress_bar] |
|
) |
|
|
|
|
|
def update_info(selected_json): |
|
selected_indices = json.loads(selected_json) |
|
if selected_indices: |
|
info = "Selected LoRAs: " + ", ".join([loras[i]["title"] for i in selected_indices]) |
|
else: |
|
info = "No LoRAs selected." |
|
return info |
|
selected_indices_hidden.change( |
|
update_info, |
|
inputs=selected_indices_hidden, |
|
outputs=selected_info |
|
) |
|
|
|
app.queue() |
|
app.launch() |