File size: 4,201 Bytes
a228fac 12af45e a228fac 12af45e a228fac 12af45e a228fac 12af45e a228fac 12af45e a228fac 12af45e a228fac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"d:\\FYP\\lilt-app-without-fd\\lilt-env\\lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"source": [
"from transformers import LiltModel, AutoTokenizer, LiltForTokenClassification"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Download tokenizer"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"('models/lilt-tokenizer\\\\tokenizer_config.json',\n",
" 'models/lilt-tokenizer\\\\special_tokens_map.json',\n",
" 'models/lilt-tokenizer\\\\tokenizer.json')"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"TOKENIZER = 'nielsr/lilt-xlm-roberta-base'\n",
"tokenizer = AutoTokenizer.from_pretrained(TOKENIZER)\n",
"save_dir = 'models/lilt-tokenizer'\n",
"tokenizer.save_pretrained(save_dir)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Download and save token classification model"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Downloading config.json: 100%|ββββββββββ| 1.13k/1.13k [00:00<00:00, 283kB/s]\n",
"d:\\FYP\\lilt-app-without-fd\\lilt-env\\lib\\site-packages\\huggingface_hub\\file_download.py:133: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\Gihantha Kavishka\\.cache\\huggingface\\hub. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
"To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to see activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
" warnings.warn(message)\n",
"Downloading model.safetensors: 100%|ββββββββββ| 1.13G/1.13G [08:02<00:00, 2.35MB/s]\n"
]
}
],
"source": [
"# download the model\n",
"MODEL = \"kavg/LiLT-SER-Sin\"\n",
"model = LiltForTokenClassification.from_pretrained(MODEL)\n",
"\n",
"# save the model\n",
"save_dir = \"models/lilt-ser-iob\"\n",
"model.save_pretrained(save_dir)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Download and save RE model"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"from models import LiLTRobertaLikeForRelationExtraction\n",
"\n",
"# download the model\n",
"MODEL = 'kavg/LiLT-RE-IT-Sin'\n",
"model = LiLTRobertaLikeForRelationExtraction.from_pretrained(MODEL)\n",
"\n",
"# save the model\n",
"save_dir = \"models/lilt-re\"\n",
"model.save_pretrained(save_dir)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "lilt-env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.8"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|