Spaces:
Runtime error
Runtime error
Commit
·
73b906e
1
Parent(s):
db46672
First Test
Browse files- README.md +25 -12
- app.py +62 -0
- audio.py +852 -0
- helpers.py +40 -0
- packages.txt +2 -0
- requirements.txt +17 -0
- transcription.py +218 -0
README.md
CHANGED
@@ -1,12 +1,25 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This repo's goal is to support the transcription and annotation of audios.
|
2 |
+
|
3 |
+
|
4 |
+
## Parts
|
5 |
+
|
6 |
+
- `audio.py`: Everything related to audio preprocessing and analysis.
|
7 |
+
- `transcription.py`: All code for transcript audios using fast-whisper.
|
8 |
+
- `diarization.py`: Everything related to pyannotation.
|
9 |
+
- `textformatting.py`: All related to fomatting the text in specific outputs.
|
10 |
+
|
11 |
+
## UI parts
|
12 |
+
|
13 |
+
1. Transcription.
|
14 |
+
2. Diarization.
|
15 |
+
3. Revision.
|
16 |
+
4. Output formatting.
|
17 |
+
|
18 |
+
## How to access to the service?
|
19 |
+
|
20 |
+
The user will logging using a password and user specified by me. That user and password will be manually managed by me.
|
21 |
+
|
22 |
+
## Pricing
|
23 |
+
|
24 |
+
1. Calculate the fixed cost of a server running for a long period of time.
|
25 |
+
2. Check if I can use the hibernation period to save some money.
|
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import pipeline
|
5 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
6 |
+
|
7 |
+
from transcription import fast_transcription, speech_to_text
|
8 |
+
from audio import normalizeAudio, separateVoiceInstrumental, mp3_to_wav, stereo_to_mono, cutaudio, compose_audio
|
9 |
+
from audio import overlay_audios, compose_audio, total_duration, append_wav_files
|
10 |
+
from helpers import guardar_en_archivo
|
11 |
+
|
12 |
+
|
13 |
+
def transcribe(audiofile, model):
|
14 |
+
|
15 |
+
audio_path = audiofile[0].name
|
16 |
+
|
17 |
+
audio_normalized_path = normalizeAudio(audio_path, ".wav")
|
18 |
+
|
19 |
+
novocal_path, vocal_path = separateVoiceInstrumental(audio_normalized_path)
|
20 |
+
|
21 |
+
novocal_path = mp3_to_wav(novocal_path, "novocal")
|
22 |
+
vocal_path = mp3_to_wav(vocal_path, "vocal")
|
23 |
+
|
24 |
+
out = fast_transcription(vocal_path, model, "es")
|
25 |
+
transcript = "\n".join(out)
|
26 |
+
#Archivo
|
27 |
+
nombre_archivo = guardar_en_archivo(out)
|
28 |
+
|
29 |
+
return audio_path, audio_normalized_path, vocal_path, novocal_path, transcript, nombre_archivo
|
30 |
+
|
31 |
+
|
32 |
+
transcribeI = gr.Interface(
|
33 |
+
fn=transcribe,
|
34 |
+
inputs=[
|
35 |
+
gr.File(label="Upload Files", file_count="multiple"),
|
36 |
+
gr.Radio(["base", "small", "medium", "large-v2"], label="Models", value="large-v2"),
|
37 |
+
],
|
38 |
+
outputs=[gr.Audio(type="filepath", label="original"),
|
39 |
+
gr.Audio(type="filepath", label="normalized"),
|
40 |
+
gr.Audio(type="filepath", label="vocal"),
|
41 |
+
gr.Audio(type="filepath", label="no_vocal"),
|
42 |
+
gr.TextArea(label="Transcription"),
|
43 |
+
gr.File(label="Archivo generado")
|
44 |
+
],
|
45 |
+
theme="huggingface",
|
46 |
+
title="Transcripción",
|
47 |
+
description=(
|
48 |
+
"Sound extraction, processing, and dialogue transcription.\n"
|
49 |
+
"Paste a link to a youtube video\n"
|
50 |
+
),
|
51 |
+
allow_flagging="never",
|
52 |
+
#examples=[[None, "COSER-4004-01-00_5m.wav", "large-v2"]]
|
53 |
+
|
54 |
+
)
|
55 |
+
|
56 |
+
demo = gr.Blocks()
|
57 |
+
with demo:
|
58 |
+
gr.Markdown("# Dubbing")
|
59 |
+
gr.TabbedInterface([diarizationI], ["Diarización"])
|
60 |
+
|
61 |
+
#demo.queue(concurrency_count=1).launch(enable_queue=True, auth=(os.environ['USER'], os.environ['PASSWORD']))
|
62 |
+
demo.launch(enable_queue=True)
|
audio.py
ADDED
@@ -0,0 +1,852 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from utils import *
|
2 |
+
import datetime
|
3 |
+
|
4 |
+
from pydub import AudioSegment, effects
|
5 |
+
|
6 |
+
|
7 |
+
def normalizeAudio(file, format):
|
8 |
+
#https://stackoverflow.com/questions/42492246/how-to-normalize-the-volume-of-an-audio-file-in-python
|
9 |
+
rawsound = AudioSegment.from_file(file, format)
|
10 |
+
normalizedsound = effects.normalize(rawsound)
|
11 |
+
timestamp = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
12 |
+
|
13 |
+
|
14 |
+
output_file = f"normalized_{timestamp}.wav"
|
15 |
+
normalizedsound.export(output_file, format="wav")
|
16 |
+
|
17 |
+
return output_file
|
18 |
+
|
19 |
+
|
20 |
+
def mp3_to_wav(mp3_path, tag):
|
21 |
+
# Load the MP3 file
|
22 |
+
audio = AudioSegment.from_mp3(mp3_path)
|
23 |
+
|
24 |
+
outfile = mp3_path.split(".")[0] + tag +".wav"
|
25 |
+
|
26 |
+
# Export the audio in WAV format
|
27 |
+
audio.export(outfile, format="wav")
|
28 |
+
|
29 |
+
return outfile
|
30 |
+
|
31 |
+
def stereo_to_mono(wav_path):
|
32 |
+
# Load the stereo WAV file
|
33 |
+
audio = AudioSegment.from_wav(wav_path)
|
34 |
+
|
35 |
+
# Convert to mono
|
36 |
+
audio_mono = audio.set_channels(1)
|
37 |
+
|
38 |
+
# Export the audio in WAV format
|
39 |
+
audio_mono.export(wav_path, format="wav")
|
40 |
+
|
41 |
+
return wav_path
|
42 |
+
|
43 |
+
def cutaudio(audiopath, start_time, end_time):
|
44 |
+
audio = AudioSegment.from_wav(audiopath)[start_time:end_time]
|
45 |
+
exportname = str(start_time)+"_"+str(end_time)+".wav"
|
46 |
+
audio.export(exportname, format="wav")
|
47 |
+
|
48 |
+
return exportname
|
49 |
+
|
50 |
+
|
51 |
+
def compose_audio(audio_files, timestamps, output_file):
|
52 |
+
# Example usage:
|
53 |
+
# audio_files = ["clip1.wav", "clip2.wav", "clip3.wav"]
|
54 |
+
# timestamps = [0, 5000, 10000, 15] # clip1 starts at 0s, clip2 at 5s, and clip3 at 10s; audio ends at 15s
|
55 |
+
# output_file = "composed_audio.wav"
|
56 |
+
# compose_audio(audio_files, timestamps, output_file)
|
57 |
+
|
58 |
+
# Check if lengths are consistent
|
59 |
+
if len(audio_files) != len(timestamps) - 1:
|
60 |
+
raise ValueError("Number of timestamps should be one more than number of audio files")
|
61 |
+
|
62 |
+
# Load the first audio file
|
63 |
+
final_audio = AudioSegment.silent(duration=timestamps[0])
|
64 |
+
|
65 |
+
for i, audio_file in enumerate(audio_files):
|
66 |
+
# Load the audio clip
|
67 |
+
clip = AudioSegment.from_wav(audio_file) # Change this if you're using a different format
|
68 |
+
|
69 |
+
# Calculate the amount of silence needed before the clip
|
70 |
+
silence_duration = (timestamps[i + 1] - timestamps[i] - len(clip) ) # in milliseconds
|
71 |
+
|
72 |
+
if silence_duration < 0:
|
73 |
+
print(f"Warning: Clip {audio_file} is longer than the gap between timestamps {i} and {i + 1}. Trimming the audio.")
|
74 |
+
clip = clip[:timestamps[i + 1] - timestamps[i]] # Trim the clip
|
75 |
+
silence_duration = 0
|
76 |
+
|
77 |
+
final_audio += clip + AudioSegment.silent(duration=silence_duration)
|
78 |
+
|
79 |
+
# Export final audio
|
80 |
+
#timestamp = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
81 |
+
|
82 |
+
#output_file_time = f"{output_file}_{timestamp}.wav"
|
83 |
+
final_audio.export(output_file, format="wav")
|
84 |
+
|
85 |
+
return output_file
|
86 |
+
|
87 |
+
def append_wav_files(filenames, output_filename):
|
88 |
+
# Load the first WAV file
|
89 |
+
combined = AudioSegment.from_wav(filenames[0])
|
90 |
+
|
91 |
+
# Load each subsequent WAV file and append to the combined segment
|
92 |
+
for filename in filenames[1:]:
|
93 |
+
audio = AudioSegment.from_wav(filename)
|
94 |
+
combined += audio
|
95 |
+
|
96 |
+
# Export the combined audio
|
97 |
+
combined.export(output_filename, format="wav")
|
98 |
+
|
99 |
+
return output_filename
|
100 |
+
|
101 |
+
# def generateAudio(respuesta, elabs_key):
|
102 |
+
|
103 |
+
# user = ElevenLabsUser(elabs_key)
|
104 |
+
# premadeVoice = user.get_voices_by_name("Rachel")[0]
|
105 |
+
# playbackOptions = PlaybackOptions(runInBackground=False)
|
106 |
+
# generationOptions = GenerationOptions(model_id="eleven_multilingual_v1", stability=0.3, similarity_boost=0.7, style=0.6, #eleven_english_v2
|
107 |
+
# use_speaker_boost=True)
|
108 |
+
# audioData, historyID = premadeVoice.generate_audio_v2(respuesta, generationOptions)
|
109 |
+
# #generationData = premadeVoice.generate_play_audio_v2(text, PlaybackOptions(runInBackground=False), GenerationOptions(stability=0.4))
|
110 |
+
|
111 |
+
# filename = "output.wav"
|
112 |
+
# #Save them to disk, in ogg format (can be any format supported by SoundFile)
|
113 |
+
# save_audio_bytes(audioData, filename, outputFormat="wav")
|
114 |
+
|
115 |
+
# return filename
|
116 |
+
|
117 |
+
def overlay_audios(audio_paths, output_file):
|
118 |
+
# Load all the audios
|
119 |
+
audios = [AudioSegment.from_wav(path) for path in audio_paths] # assuming WAV format
|
120 |
+
|
121 |
+
# Find the length of the longest audio
|
122 |
+
max_length = max(audio.duration_seconds for audio in audios)
|
123 |
+
|
124 |
+
# Pad all audios to the length of the longest one
|
125 |
+
padded_audios = [audio + AudioSegment.silent(duration=(max_length - audio.duration_seconds) * 1000) for audio in audios]
|
126 |
+
|
127 |
+
# Start with the first padded audio
|
128 |
+
overlay_audio = padded_audios[0]
|
129 |
+
|
130 |
+
# Overlay the rest of the audios on top
|
131 |
+
for audio in padded_audios[1:]:
|
132 |
+
overlay_audio = overlay_audio.overlay(audio)
|
133 |
+
|
134 |
+
overlay_audio.export(output_file, format="wav")
|
135 |
+
|
136 |
+
return output_file
|
137 |
+
|
138 |
+
def total_duration(audiofile):
|
139 |
+
audiofile = Path(audiofile)
|
140 |
+
format = audiofile.suffix.replace(".","")
|
141 |
+
song = AudioSegment.from_file(audiofile, format=format)
|
142 |
+
#song = load_audio_segment(audiofile, audiofile.split(".")[-1])
|
143 |
+
n_msecs = len(song)
|
144 |
+
return n_msecs
|
145 |
+
|
146 |
+
###########################################################################
|
147 |
+
|
148 |
+
def separateVoiceInstrumental(audiofile):
|
149 |
+
|
150 |
+
audiofile = Path(audiofile)
|
151 |
+
filename = audiofile.stem
|
152 |
+
format = audiofile.suffix.replace(".","")
|
153 |
+
|
154 |
+
song = AudioSegment.from_file(audiofile, format=format)
|
155 |
+
#song = load_audio_segment(audiofile, audiofile.split(".")[-1])
|
156 |
+
n_secs = round(len(song) / 1000)
|
157 |
+
|
158 |
+
start_time = 0
|
159 |
+
end_time = n_secs
|
160 |
+
|
161 |
+
model_name, file_sources = ("htdemucs", ["vocals.mp3", "no_vocals.mp3"])
|
162 |
+
out_path = Path("output")
|
163 |
+
stem = "vocals"
|
164 |
+
|
165 |
+
|
166 |
+
separator(
|
167 |
+
tracks=[audiofile],
|
168 |
+
out=out_path,
|
169 |
+
model=model_name,
|
170 |
+
shifts=1,
|
171 |
+
overlap=0.5,
|
172 |
+
stem=stem,
|
173 |
+
int24=False,
|
174 |
+
float32=False,
|
175 |
+
clip_mode="rescale",
|
176 |
+
mp3=True,
|
177 |
+
mp3_bitrate=320,
|
178 |
+
verbose=True,
|
179 |
+
start_time=start_time,
|
180 |
+
end_time=end_time,
|
181 |
+
)
|
182 |
+
|
183 |
+
instrumentalFile = f"output/htdemucs/{filename}/no_vocals.mp3"
|
184 |
+
voiceFile = f"output/htdemucs/{filename}/vocals.mp3"
|
185 |
+
|
186 |
+
return instrumentalFile, voiceFile
|
187 |
+
|
188 |
+
|
189 |
+
################################################################################
|
190 |
+
|
191 |
+
import argparse
|
192 |
+
import sys
|
193 |
+
from pathlib import Path
|
194 |
+
from typing import List
|
195 |
+
import os
|
196 |
+
from dora.log import fatal
|
197 |
+
import torch as th
|
198 |
+
|
199 |
+
from demucs.apply import apply_model, BagOfModels
|
200 |
+
from demucs.audio import save_audio
|
201 |
+
from demucs.pretrained import get_model_from_args, ModelLoadingError
|
202 |
+
from demucs.separate import load_track
|
203 |
+
|
204 |
+
def separator(
|
205 |
+
tracks: List[Path],
|
206 |
+
out: Path,
|
207 |
+
model: str,
|
208 |
+
shifts: int,
|
209 |
+
overlap: float,
|
210 |
+
stem: str,
|
211 |
+
int24: bool,
|
212 |
+
float32: bool,
|
213 |
+
clip_mode: str,
|
214 |
+
mp3: bool,
|
215 |
+
mp3_bitrate: int,
|
216 |
+
verbose: bool,
|
217 |
+
*args,
|
218 |
+
**kwargs,
|
219 |
+
):
|
220 |
+
"""Separate the sources for the given tracks
|
221 |
+
Args:
|
222 |
+
tracks (Path): Path to tracks
|
223 |
+
out (Path): Folder where to put extracted tracks. A subfolder with the model name will be
|
224 |
+
created.
|
225 |
+
model (str): Model name
|
226 |
+
shifts (int): Number of random shifts for equivariant stabilization.
|
227 |
+
Increase separation time but improves quality for Demucs.
|
228 |
+
10 was used in the original paper.
|
229 |
+
overlap (float): Overlap
|
230 |
+
stem (str): Only separate audio into {STEM} and no_{STEM}.
|
231 |
+
int24 (bool): Save wav output as 24 bits wav.
|
232 |
+
float32 (bool): Save wav output as float32 (2x bigger).
|
233 |
+
clip_mode (str): Strategy for avoiding clipping: rescaling entire signal if necessary
|
234 |
+
(rescale) or hard clipping (clamp).
|
235 |
+
mp3 (bool): Convert the output wavs to mp3.
|
236 |
+
mp3_bitrate (int): Bitrate of converted mp3.
|
237 |
+
verbose (bool): Verbose
|
238 |
+
"""
|
239 |
+
|
240 |
+
if os.environ.get("LIMIT_CPU", False):
|
241 |
+
th.set_num_threads(1)
|
242 |
+
jobs = 1
|
243 |
+
else:
|
244 |
+
# Number of jobs. This can increase memory usage but will be much faster when
|
245 |
+
# multiple cores are available.
|
246 |
+
jobs = os.cpu_count()
|
247 |
+
|
248 |
+
if th.cuda.is_available():
|
249 |
+
device = "cuda"
|
250 |
+
else:
|
251 |
+
device = "cpu"
|
252 |
+
args = argparse.Namespace()
|
253 |
+
args.tracks = tracks
|
254 |
+
args.out = out
|
255 |
+
args.model = model
|
256 |
+
args.device = device
|
257 |
+
args.shifts = shifts
|
258 |
+
args.overlap = overlap
|
259 |
+
args.stem = stem
|
260 |
+
args.int24 = int24
|
261 |
+
args.float32 = float32
|
262 |
+
args.clip_mode = clip_mode
|
263 |
+
args.mp3 = mp3
|
264 |
+
args.mp3_bitrate = mp3_bitrate
|
265 |
+
args.jobs = jobs
|
266 |
+
args.verbose = verbose
|
267 |
+
args.filename = "{track}/{stem}.{ext}"
|
268 |
+
args.split = True
|
269 |
+
args.segment = None
|
270 |
+
args.name = model
|
271 |
+
args.repo = None
|
272 |
+
|
273 |
+
try:
|
274 |
+
model = get_model_from_args(args)
|
275 |
+
except ModelLoadingError as error:
|
276 |
+
fatal(error.args[0])
|
277 |
+
|
278 |
+
if args.segment is not None and args.segment < 8:
|
279 |
+
fatal("Segment must greater than 8. ")
|
280 |
+
|
281 |
+
if ".." in args.filename.replace("\\", "/").split("/"):
|
282 |
+
fatal('".." must not appear in filename. ')
|
283 |
+
|
284 |
+
if isinstance(model, BagOfModels):
|
285 |
+
print(
|
286 |
+
f"Selected model is a bag of {len(model.models)} models. "
|
287 |
+
"You will see that many progress bars per track."
|
288 |
+
)
|
289 |
+
if args.segment is not None:
|
290 |
+
for sub in model.models:
|
291 |
+
sub.segment = args.segment
|
292 |
+
else:
|
293 |
+
if args.segment is not None:
|
294 |
+
model.segment = args.segment
|
295 |
+
|
296 |
+
model.cpu()
|
297 |
+
model.eval()
|
298 |
+
|
299 |
+
if args.stem is not None and args.stem not in model.sources:
|
300 |
+
fatal(
|
301 |
+
'error: stem "{stem}" is not in selected model. STEM must be one of {sources}.'.format(
|
302 |
+
stem=args.stem, sources=", ".join(model.sources)
|
303 |
+
)
|
304 |
+
)
|
305 |
+
out = args.out / args.name
|
306 |
+
out.mkdir(parents=True, exist_ok=True)
|
307 |
+
print(f"Separated tracks will be stored in {out.resolve()}")
|
308 |
+
for track in args.tracks:
|
309 |
+
if not track.exists():
|
310 |
+
print(
|
311 |
+
f"File {track} does not exist. If the path contains spaces, "
|
312 |
+
'please try again after surrounding the entire path with quotes "".',
|
313 |
+
file=sys.stderr,
|
314 |
+
)
|
315 |
+
continue
|
316 |
+
print(f"Separating track {track}")
|
317 |
+
wav = load_track(track, model.audio_channels, model.samplerate)
|
318 |
+
|
319 |
+
ref = wav.mean(0)
|
320 |
+
wav = (wav - ref.mean()) / ref.std()
|
321 |
+
sources = apply_model(
|
322 |
+
model,
|
323 |
+
wav[None],
|
324 |
+
device=args.device,
|
325 |
+
shifts=args.shifts,
|
326 |
+
split=args.split,
|
327 |
+
overlap=args.overlap,
|
328 |
+
progress=True,
|
329 |
+
num_workers=args.jobs,
|
330 |
+
)[0]
|
331 |
+
sources = sources * ref.std() + ref.mean()
|
332 |
+
|
333 |
+
if args.mp3:
|
334 |
+
ext = "mp3"
|
335 |
+
else:
|
336 |
+
ext = "wav"
|
337 |
+
kwargs = {
|
338 |
+
"samplerate": model.samplerate,
|
339 |
+
"bitrate": args.mp3_bitrate,
|
340 |
+
"clip": args.clip_mode,
|
341 |
+
"as_float": args.float32,
|
342 |
+
"bits_per_sample": 24 if args.int24 else 16,
|
343 |
+
}
|
344 |
+
if args.stem is None:
|
345 |
+
for source, name in zip(sources, model.sources):
|
346 |
+
stem = out / args.filename.format(
|
347 |
+
track=track.name.rsplit(".", 1)[0],
|
348 |
+
trackext=track.name.rsplit(".", 1)[-1],
|
349 |
+
stem=name,
|
350 |
+
ext=ext,
|
351 |
+
)
|
352 |
+
stem.parent.mkdir(parents=True, exist_ok=True)
|
353 |
+
save_audio(source, str(stem), **kwargs)
|
354 |
+
else:
|
355 |
+
sources = list(sources)
|
356 |
+
stem = out / args.filename.format(
|
357 |
+
track=track.name.rsplit(".", 1)[0],
|
358 |
+
trackext=track.name.rsplit(".", 1)[-1],
|
359 |
+
stem=args.stem,
|
360 |
+
ext=ext,
|
361 |
+
)
|
362 |
+
stem.parent.mkdir(parents=True, exist_ok=True)
|
363 |
+
save_audio(sources.pop(model.sources.index(args.stem)), str(stem), **kwargs)
|
364 |
+
# Warning : after poping the stem, selected stem is no longer in the list 'sources'
|
365 |
+
other_stem = th.zeros_like(sources[0])
|
366 |
+
for i in sources:
|
367 |
+
other_stem += i
|
368 |
+
stem = out / args.filename.format(
|
369 |
+
track=track.name.rsplit(".", 1)[0],
|
370 |
+
trackext=track.name.rsplit(".", 1)[-1],
|
371 |
+
stem="no_" + args.stem,
|
372 |
+
ext=ext,
|
373 |
+
)
|
374 |
+
stem.parent.mkdir(parents=True, exist_ok=True)
|
375 |
+
save_audio(other_stem, str(stem), **kwargs)
|
376 |
+
|
377 |
+
|
378 |
+
##############################################################################
|
379 |
+
|
380 |
+
import os
|
381 |
+
import logging
|
382 |
+
import librosa
|
383 |
+
import numpy as np
|
384 |
+
import soundfile as sf
|
385 |
+
import torch
|
386 |
+
from pydub import AudioSegment
|
387 |
+
|
388 |
+
if os.environ.get("LIMIT_CPU", False):
|
389 |
+
torch.set_num_threads(1)
|
390 |
+
|
391 |
+
|
392 |
+
def merge_artifacts(y_mask, thres=0.05, min_range=64, fade_size=32):
|
393 |
+
if min_range < fade_size * 2:
|
394 |
+
raise ValueError("min_range must be >= fade_size * 2")
|
395 |
+
|
396 |
+
idx = np.where(y_mask.min(axis=(0, 1)) > thres)[0]
|
397 |
+
start_idx = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
|
398 |
+
end_idx = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
|
399 |
+
artifact_idx = np.where(end_idx - start_idx > min_range)[0]
|
400 |
+
weight = np.zeros_like(y_mask)
|
401 |
+
if len(artifact_idx) > 0:
|
402 |
+
start_idx = start_idx[artifact_idx]
|
403 |
+
end_idx = end_idx[artifact_idx]
|
404 |
+
old_e = None
|
405 |
+
for s, e in zip(start_idx, end_idx):
|
406 |
+
if old_e is not None and s - old_e < fade_size:
|
407 |
+
s = old_e - fade_size * 2
|
408 |
+
|
409 |
+
if s != 0:
|
410 |
+
weight[:, :, s : s + fade_size] = np.linspace(0, 1, fade_size)
|
411 |
+
else:
|
412 |
+
s -= fade_size
|
413 |
+
|
414 |
+
if e != y_mask.shape[2]:
|
415 |
+
weight[:, :, e - fade_size : e] = np.linspace(1, 0, fade_size)
|
416 |
+
else:
|
417 |
+
e += fade_size
|
418 |
+
|
419 |
+
weight[:, :, s + fade_size : e - fade_size] = 1
|
420 |
+
old_e = e
|
421 |
+
|
422 |
+
v_mask = 1 - y_mask
|
423 |
+
y_mask += weight * v_mask
|
424 |
+
|
425 |
+
return y_mask
|
426 |
+
|
427 |
+
|
428 |
+
def make_padding(width, cropsize, offset):
|
429 |
+
left = offset
|
430 |
+
roi_size = cropsize - offset * 2
|
431 |
+
if roi_size == 0:
|
432 |
+
roi_size = cropsize
|
433 |
+
right = roi_size - (width % roi_size) + left
|
434 |
+
|
435 |
+
return left, right, roi_size
|
436 |
+
|
437 |
+
|
438 |
+
def wave_to_spectrogram(wave, hop_length, n_fft):
|
439 |
+
wave_left = np.asfortranarray(wave[0])
|
440 |
+
wave_right = np.asfortranarray(wave[1])
|
441 |
+
|
442 |
+
spec_left = librosa.stft(wave_left, n_fft=n_fft, hop_length=hop_length)
|
443 |
+
spec_right = librosa.stft(wave_right, n_fft=n_fft, hop_length=hop_length)
|
444 |
+
spec = np.asfortranarray([spec_left, spec_right])
|
445 |
+
|
446 |
+
return spec
|
447 |
+
|
448 |
+
|
449 |
+
def spectrogram_to_wave(spec, hop_length=1024):
|
450 |
+
if spec.ndim == 2:
|
451 |
+
wave = librosa.istft(spec, hop_length=hop_length)
|
452 |
+
elif spec.ndim == 3:
|
453 |
+
spec_left = np.asfortranarray(spec[0])
|
454 |
+
spec_right = np.asfortranarray(spec[1])
|
455 |
+
|
456 |
+
wave_left = librosa.istft(spec_left, hop_length=hop_length)
|
457 |
+
wave_right = librosa.istft(spec_right, hop_length=hop_length)
|
458 |
+
wave = np.asfortranarray([wave_left, wave_right])
|
459 |
+
|
460 |
+
return wave
|
461 |
+
|
462 |
+
|
463 |
+
class Separator(object):
|
464 |
+
def __init__(self, model, device, batchsize, cropsize, postprocess=False, progress_bar=None):
|
465 |
+
self.model = model
|
466 |
+
self.offset = model.offset
|
467 |
+
self.device = device
|
468 |
+
self.batchsize = batchsize
|
469 |
+
self.cropsize = cropsize
|
470 |
+
self.postprocess = postprocess
|
471 |
+
self.progress_bar = progress_bar
|
472 |
+
|
473 |
+
def _separate(self, X_mag_pad, roi_size):
|
474 |
+
X_dataset = []
|
475 |
+
patches = (X_mag_pad.shape[2] - 2 * self.offset) // roi_size
|
476 |
+
for i in range(patches):
|
477 |
+
start = i * roi_size
|
478 |
+
X_mag_crop = X_mag_pad[:, :, start : start + self.cropsize]
|
479 |
+
X_dataset.append(X_mag_crop)
|
480 |
+
|
481 |
+
X_dataset = np.asarray(X_dataset)
|
482 |
+
|
483 |
+
self.model.eval()
|
484 |
+
with torch.no_grad():
|
485 |
+
mask = []
|
486 |
+
# To reduce the overhead, dataloader is not used.
|
487 |
+
for i in range(0, patches, self.batchsize):
|
488 |
+
X_batch = X_dataset[i : i + self.batchsize]
|
489 |
+
X_batch = torch.from_numpy(X_batch).to(self.device)
|
490 |
+
|
491 |
+
pred = self.model.predict_mask(X_batch)
|
492 |
+
|
493 |
+
pred = pred.detach().cpu().numpy()
|
494 |
+
pred = np.concatenate(pred, axis=2)
|
495 |
+
mask.append(pred)
|
496 |
+
|
497 |
+
mask = np.concatenate(mask, axis=2)
|
498 |
+
|
499 |
+
return mask
|
500 |
+
|
501 |
+
def _preprocess(self, X_spec):
|
502 |
+
X_mag = np.abs(X_spec)
|
503 |
+
X_phase = np.angle(X_spec)
|
504 |
+
|
505 |
+
return X_mag, X_phase
|
506 |
+
|
507 |
+
def _postprocess(self, mask, X_mag, X_phase):
|
508 |
+
if self.postprocess:
|
509 |
+
mask = merge_artifacts(mask)
|
510 |
+
|
511 |
+
y_spec = mask * X_mag * np.exp(1.0j * X_phase)
|
512 |
+
v_spec = (1 - mask) * X_mag * np.exp(1.0j * X_phase)
|
513 |
+
|
514 |
+
return y_spec, v_spec
|
515 |
+
|
516 |
+
def separate(self, X_spec):
|
517 |
+
X_mag, X_phase = self._preprocess(X_spec)
|
518 |
+
|
519 |
+
n_frame = X_mag.shape[2]
|
520 |
+
pad_l, pad_r, roi_size = make_padding(n_frame, self.cropsize, self.offset)
|
521 |
+
X_mag_pad = np.pad(X_mag, ((0, 0), (0, 0), (pad_l, pad_r)), mode="constant")
|
522 |
+
X_mag_pad /= X_mag_pad.max()
|
523 |
+
|
524 |
+
mask = self._separate(X_mag_pad, roi_size)
|
525 |
+
mask = mask[:, :, :n_frame]
|
526 |
+
|
527 |
+
y_spec, v_spec = self._postprocess(mask, X_mag, X_phase)
|
528 |
+
|
529 |
+
return y_spec, v_spec
|
530 |
+
|
531 |
+
|
532 |
+
def load_model(pretrained_model, n_fft=2048):
|
533 |
+
model = CascadedNet(n_fft, 32, 128)
|
534 |
+
if torch.cuda.is_available():
|
535 |
+
device = torch.device("cuda:0")
|
536 |
+
model.to(device)
|
537 |
+
# elif torch.backends.mps.is_available() and torch.backends.mps.is_built():
|
538 |
+
# device = torch.device("mps")
|
539 |
+
# model.to(device)
|
540 |
+
else:
|
541 |
+
device = torch.device("cpu")
|
542 |
+
model.load_state_dict(torch.load(pretrained_model, map_location=device))
|
543 |
+
return model, device
|
544 |
+
|
545 |
+
|
546 |
+
def separate(
|
547 |
+
input,
|
548 |
+
model,
|
549 |
+
device,
|
550 |
+
output_dir,
|
551 |
+
batchsize=4,
|
552 |
+
cropsize=256,
|
553 |
+
postprocess=False,
|
554 |
+
hop_length=1024,
|
555 |
+
n_fft=2048,
|
556 |
+
sr=44100,
|
557 |
+
progress_bar=None,
|
558 |
+
only_no_vocals=False,
|
559 |
+
):
|
560 |
+
X, sr = librosa.load(input, sr=sr, mono=False, dtype=np.float32, res_type="kaiser_fast")
|
561 |
+
basename = os.path.splitext(os.path.basename(input))[0]
|
562 |
+
|
563 |
+
if X.ndim == 1:
|
564 |
+
# mono to stereo
|
565 |
+
X = np.asarray([X, X])
|
566 |
+
|
567 |
+
X_spec = wave_to_spectrogram(X, hop_length, n_fft)
|
568 |
+
|
569 |
+
with torch.no_grad():
|
570 |
+
sp = Separator(model, device, batchsize, cropsize, postprocess, progress_bar=progress_bar)
|
571 |
+
y_spec, v_spec = sp.separate(X_spec)
|
572 |
+
|
573 |
+
base_dir = f"{output_dir}/vocal_remover/{basename}"
|
574 |
+
os.makedirs(base_dir, exist_ok=True)
|
575 |
+
|
576 |
+
wave = spectrogram_to_wave(y_spec, hop_length=hop_length)
|
577 |
+
try:
|
578 |
+
sf.write(f"{base_dir}/no_vocals.mp3", wave.T, sr)
|
579 |
+
except Exception:
|
580 |
+
logging.error("Failed to write no_vocals.mp3, trying pydub...")
|
581 |
+
pydub_write(wave, f"{base_dir}/no_vocals.mp3", sr)
|
582 |
+
if only_no_vocals:
|
583 |
+
return
|
584 |
+
wave = spectrogram_to_wave(v_spec, hop_length=hop_length)
|
585 |
+
try:
|
586 |
+
sf.write(f"{base_dir}/vocals.mp3", wave.T, sr)
|
587 |
+
except Exception:
|
588 |
+
logging.error("Failed to write vocals.mp3, trying pydub...")
|
589 |
+
pydub_write(wave, f"{base_dir}/vocals.mp3", sr)
|
590 |
+
|
591 |
+
|
592 |
+
def pydub_write(wave, output_path, frame_rate, audio_format="mp3"):
|
593 |
+
# Ensure the wave data is in the right format for pydub (mono and 16-bit depth)
|
594 |
+
wave_16bit = (wave * 32767).astype(np.int16)
|
595 |
+
|
596 |
+
audio_segment = AudioSegment(
|
597 |
+
wave_16bit.tobytes(),
|
598 |
+
frame_rate=frame_rate,
|
599 |
+
sample_width=wave_16bit.dtype.itemsize,
|
600 |
+
channels=1,
|
601 |
+
)
|
602 |
+
audio_segment.export(output_path, format=audio_format)
|
603 |
+
|
604 |
+
#####################################################################################
|
605 |
+
|
606 |
+
import torch
|
607 |
+
from torch import nn
|
608 |
+
import torch.nn.functional as F
|
609 |
+
|
610 |
+
|
611 |
+
class BaseNet(nn.Module):
|
612 |
+
def __init__(self, nin, nout, nin_lstm, nout_lstm, dilations=((4, 2), (8, 4), (12, 6))):
|
613 |
+
super(BaseNet, self).__init__()
|
614 |
+
self.enc1 = Conv2DBNActiv(nin, nout, 3, 1, 1)
|
615 |
+
self.enc2 = Encoder(nout, nout * 2, 3, 2, 1)
|
616 |
+
self.enc3 = Encoder(nout * 2, nout * 4, 3, 2, 1)
|
617 |
+
self.enc4 = Encoder(nout * 4, nout * 6, 3, 2, 1)
|
618 |
+
self.enc5 = Encoder(nout * 6, nout * 8, 3, 2, 1)
|
619 |
+
|
620 |
+
self.aspp = ASPPModule(nout * 8, nout * 8, dilations, dropout=True)
|
621 |
+
|
622 |
+
self.dec4 = Decoder(nout * (6 + 8), nout * 6, 3, 1, 1)
|
623 |
+
self.dec3 = Decoder(nout * (4 + 6), nout * 4, 3, 1, 1)
|
624 |
+
self.dec2 = Decoder(nout * (2 + 4), nout * 2, 3, 1, 1)
|
625 |
+
self.lstm_dec2 = LSTMModule(nout * 2, nin_lstm, nout_lstm)
|
626 |
+
self.dec1 = Decoder(nout * (1 + 2) + 1, nout * 1, 3, 1, 1)
|
627 |
+
|
628 |
+
def __call__(self, x):
|
629 |
+
e1 = self.enc1(x)
|
630 |
+
e2 = self.enc2(e1)
|
631 |
+
e3 = self.enc3(e2)
|
632 |
+
e4 = self.enc4(e3)
|
633 |
+
e5 = self.enc5(e4)
|
634 |
+
|
635 |
+
h = self.aspp(e5)
|
636 |
+
|
637 |
+
h = self.dec4(h, e4)
|
638 |
+
h = self.dec3(h, e3)
|
639 |
+
h = self.dec2(h, e2)
|
640 |
+
h = torch.cat([h, self.lstm_dec2(h)], dim=1)
|
641 |
+
h = self.dec1(h, e1)
|
642 |
+
|
643 |
+
return h
|
644 |
+
|
645 |
+
|
646 |
+
class CascadedNet(nn.Module):
|
647 |
+
def __init__(self, n_fft, nout=32, nout_lstm=128):
|
648 |
+
super(CascadedNet, self).__init__()
|
649 |
+
self.max_bin = n_fft // 2
|
650 |
+
self.output_bin = n_fft // 2 + 1
|
651 |
+
self.nin_lstm = self.max_bin // 2
|
652 |
+
self.offset = 64
|
653 |
+
|
654 |
+
self.stg1_low_band_net = nn.Sequential(
|
655 |
+
BaseNet(2, nout // 2, self.nin_lstm // 2, nout_lstm),
|
656 |
+
Conv2DBNActiv(nout // 2, nout // 4, 1, 1, 0),
|
657 |
+
)
|
658 |
+
self.stg1_high_band_net = BaseNet(2, nout // 4, self.nin_lstm // 2, nout_lstm // 2)
|
659 |
+
|
660 |
+
self.stg2_low_band_net = nn.Sequential(
|
661 |
+
BaseNet(nout // 4 + 2, nout, self.nin_lstm // 2, nout_lstm),
|
662 |
+
Conv2DBNActiv(nout, nout // 2, 1, 1, 0),
|
663 |
+
)
|
664 |
+
self.stg2_high_band_net = BaseNet(
|
665 |
+
nout // 4 + 2, nout // 2, self.nin_lstm // 2, nout_lstm // 2
|
666 |
+
)
|
667 |
+
|
668 |
+
self.stg3_full_band_net = BaseNet(3 * nout // 4 + 2, nout, self.nin_lstm, nout_lstm)
|
669 |
+
|
670 |
+
self.out = nn.Conv2d(nout, 2, 1, bias=False)
|
671 |
+
self.aux_out = nn.Conv2d(3 * nout // 4, 2, 1, bias=False)
|
672 |
+
|
673 |
+
def forward(self, x):
|
674 |
+
x = x[:, :, : self.max_bin]
|
675 |
+
|
676 |
+
bandw = x.size()[2] // 2
|
677 |
+
l1_in = x[:, :, :bandw]
|
678 |
+
h1_in = x[:, :, bandw:]
|
679 |
+
l1 = self.stg1_low_band_net(l1_in)
|
680 |
+
h1 = self.stg1_high_band_net(h1_in)
|
681 |
+
aux1 = torch.cat([l1, h1], dim=2)
|
682 |
+
|
683 |
+
l2_in = torch.cat([l1_in, l1], dim=1)
|
684 |
+
h2_in = torch.cat([h1_in, h1], dim=1)
|
685 |
+
l2 = self.stg2_low_band_net(l2_in)
|
686 |
+
h2 = self.stg2_high_band_net(h2_in)
|
687 |
+
aux2 = torch.cat([l2, h2], dim=2)
|
688 |
+
|
689 |
+
f3_in = torch.cat([x, aux1, aux2], dim=1)
|
690 |
+
f3 = self.stg3_full_band_net(f3_in)
|
691 |
+
|
692 |
+
mask = torch.sigmoid(self.out(f3))
|
693 |
+
mask = F.pad(
|
694 |
+
input=mask,
|
695 |
+
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
696 |
+
mode="replicate",
|
697 |
+
)
|
698 |
+
|
699 |
+
if self.training:
|
700 |
+
aux = torch.cat([aux1, aux2], dim=1)
|
701 |
+
aux = torch.sigmoid(self.aux_out(aux))
|
702 |
+
aux = F.pad(
|
703 |
+
input=aux,
|
704 |
+
pad=(0, 0, 0, self.output_bin - aux.size()[2]),
|
705 |
+
mode="replicate",
|
706 |
+
)
|
707 |
+
return mask, aux
|
708 |
+
else:
|
709 |
+
return mask
|
710 |
+
|
711 |
+
def predict_mask(self, x):
|
712 |
+
mask = self.forward(x)
|
713 |
+
|
714 |
+
if self.offset > 0:
|
715 |
+
mask = mask[:, :, :, self.offset : -self.offset]
|
716 |
+
assert mask.size()[3] > 0
|
717 |
+
|
718 |
+
return mask
|
719 |
+
|
720 |
+
def predict(self, x):
|
721 |
+
mask = self.forward(x)
|
722 |
+
pred_mag = x * mask
|
723 |
+
|
724 |
+
if self.offset > 0:
|
725 |
+
pred_mag = pred_mag[:, :, :, self.offset : -self.offset]
|
726 |
+
assert pred_mag.size()[3] > 0
|
727 |
+
|
728 |
+
return pred_mag
|
729 |
+
|
730 |
+
##############################################################################
|
731 |
+
|
732 |
+
def crop_center(h1, h2):
|
733 |
+
h1_shape = h1.size()
|
734 |
+
h2_shape = h2.size()
|
735 |
+
|
736 |
+
if h1_shape[3] == h2_shape[3]:
|
737 |
+
return h1
|
738 |
+
elif h1_shape[3] < h2_shape[3]:
|
739 |
+
raise ValueError("h1_shape[3] must be greater than h2_shape[3]")
|
740 |
+
|
741 |
+
s_time = (h1_shape[3] - h2_shape[3]) // 2
|
742 |
+
e_time = s_time + h2_shape[3]
|
743 |
+
h1 = h1[:, :, :, s_time:e_time]
|
744 |
+
|
745 |
+
return h1
|
746 |
+
|
747 |
+
|
748 |
+
class Conv2DBNActiv(nn.Module):
|
749 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
750 |
+
super(Conv2DBNActiv, self).__init__()
|
751 |
+
self.conv = nn.Sequential(
|
752 |
+
nn.Conv2d(
|
753 |
+
nin,
|
754 |
+
nout,
|
755 |
+
kernel_size=ksize,
|
756 |
+
stride=stride,
|
757 |
+
padding=pad,
|
758 |
+
dilation=dilation,
|
759 |
+
bias=False,
|
760 |
+
),
|
761 |
+
nn.BatchNorm2d(nout),
|
762 |
+
activ(),
|
763 |
+
)
|
764 |
+
|
765 |
+
def __call__(self, x):
|
766 |
+
return self.conv(x)
|
767 |
+
|
768 |
+
|
769 |
+
class Encoder(nn.Module):
|
770 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
771 |
+
super(Encoder, self).__init__()
|
772 |
+
self.conv1 = Conv2DBNActiv(nin, nout, ksize, stride, pad, activ=activ)
|
773 |
+
self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
|
774 |
+
|
775 |
+
def __call__(self, x):
|
776 |
+
h = self.conv1(x)
|
777 |
+
h = self.conv2(h)
|
778 |
+
|
779 |
+
return h
|
780 |
+
|
781 |
+
|
782 |
+
class Decoder(nn.Module):
|
783 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
784 |
+
super(Decoder, self).__init__()
|
785 |
+
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
786 |
+
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
787 |
+
|
788 |
+
def __call__(self, x, skip=None):
|
789 |
+
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
|
790 |
+
|
791 |
+
if skip is not None:
|
792 |
+
skip = crop_center(skip, x)
|
793 |
+
x = torch.cat([x, skip], dim=1)
|
794 |
+
|
795 |
+
h = self.conv1(x)
|
796 |
+
# h = self.conv2(h)
|
797 |
+
|
798 |
+
if self.dropout is not None:
|
799 |
+
h = self.dropout(h)
|
800 |
+
|
801 |
+
return h
|
802 |
+
|
803 |
+
|
804 |
+
class ASPPModule(nn.Module):
|
805 |
+
def __init__(self, nin, nout, dilations=(4, 8, 12), activ=nn.ReLU, dropout=False):
|
806 |
+
super(ASPPModule, self).__init__()
|
807 |
+
self.conv1 = nn.Sequential(
|
808 |
+
nn.AdaptiveAvgPool2d((1, None)),
|
809 |
+
Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ),
|
810 |
+
)
|
811 |
+
self.conv2 = Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ)
|
812 |
+
self.conv3 = Conv2DBNActiv(nin, nout, 3, 1, dilations[0], dilations[0], activ=activ)
|
813 |
+
self.conv4 = Conv2DBNActiv(nin, nout, 3, 1, dilations[1], dilations[1], activ=activ)
|
814 |
+
self.conv5 = Conv2DBNActiv(nin, nout, 3, 1, dilations[2], dilations[2], activ=activ)
|
815 |
+
self.bottleneck = Conv2DBNActiv(nout * 5, nout, 1, 1, 0, activ=activ)
|
816 |
+
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
817 |
+
|
818 |
+
def forward(self, x):
|
819 |
+
_, _, h, w = x.size()
|
820 |
+
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode="bilinear", align_corners=True)
|
821 |
+
feat2 = self.conv2(x)
|
822 |
+
feat3 = self.conv3(x)
|
823 |
+
feat4 = self.conv4(x)
|
824 |
+
feat5 = self.conv5(x)
|
825 |
+
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
826 |
+
out = self.bottleneck(out)
|
827 |
+
|
828 |
+
if self.dropout is not None:
|
829 |
+
out = self.dropout(out)
|
830 |
+
|
831 |
+
return out
|
832 |
+
|
833 |
+
|
834 |
+
class LSTMModule(nn.Module):
|
835 |
+
def __init__(self, nin_conv, nin_lstm, nout_lstm):
|
836 |
+
super(LSTMModule, self).__init__()
|
837 |
+
self.conv = Conv2DBNActiv(nin_conv, 1, 1, 1, 0)
|
838 |
+
self.lstm = nn.LSTM(input_size=nin_lstm, hidden_size=nout_lstm // 2, bidirectional=True)
|
839 |
+
self.dense = nn.Sequential(
|
840 |
+
nn.Linear(nout_lstm, nin_lstm), nn.BatchNorm1d(nin_lstm), nn.ReLU()
|
841 |
+
)
|
842 |
+
|
843 |
+
def forward(self, x):
|
844 |
+
N, _, nbins, nframes = x.size()
|
845 |
+
h = self.conv(x)[:, 0] # N, nbins, nframes
|
846 |
+
h = h.permute(2, 0, 1) # nframes, N, nbins
|
847 |
+
h, _ = self.lstm(h)
|
848 |
+
h = self.dense(h.reshape(-1, h.size()[-1])) # nframes * N, nbins
|
849 |
+
h = h.reshape(nframes, N, 1, nbins)
|
850 |
+
h = h.permute(1, 2, 3, 0)
|
851 |
+
|
852 |
+
return h
|
helpers.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
|
3 |
+
def guardar_en_archivo(lista_strings):
|
4 |
+
# Formateamos la fecha
|
5 |
+
fecha_actual = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
6 |
+
nombre_archivo = f"transcription_{fecha_actual}.txt"
|
7 |
+
|
8 |
+
# Escribimos la lista en el archivo
|
9 |
+
with open(nombre_archivo, 'w') as archivo:
|
10 |
+
for linea in lista_strings:
|
11 |
+
archivo.write(linea + '\n')
|
12 |
+
|
13 |
+
return nombre_archivo
|
14 |
+
|
15 |
+
def leer_del_archivo(nombre_archivo):
|
16 |
+
with open(nombre_archivo, 'r') as archivo:
|
17 |
+
# Leemos las líneas y eliminamos el salto de línea al final
|
18 |
+
contenido = [linea.strip() for linea in archivo.readlines()]
|
19 |
+
return contenido
|
20 |
+
|
21 |
+
def guardar_dataframe_en_csv(df):
|
22 |
+
# Obtener la fecha y hora actual y formatearla
|
23 |
+
fecha_actual = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
24 |
+
|
25 |
+
# Generar el nombre del archivo
|
26 |
+
nombre_archivo = f"transcription_{fecha_actual}.csv"
|
27 |
+
|
28 |
+
# Guardar el DataFrame en el archivo CSV
|
29 |
+
df.to_csv(nombre_archivo, index=False)
|
30 |
+
|
31 |
+
return nombre_archivo
|
32 |
+
|
33 |
+
def dataframe_a_lista(df):
|
34 |
+
# Convertimos todas las columnas a string
|
35 |
+
df_str = df.astype(str)
|
36 |
+
|
37 |
+
# Concatenamos las columnas fila por fila
|
38 |
+
lista_strings = df_str.apply(lambda row: ' '.join(row), axis=1).tolist()
|
39 |
+
|
40 |
+
return lista_strings
|
packages.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
ffmpeg
|
2 |
+
portaudio19-dev
|
requirements.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#git+https://github.com/huggingface/transformers
|
2 |
+
torch
|
3 |
+
yt-dlp
|
4 |
+
openai
|
5 |
+
pydub
|
6 |
+
faster-whisper
|
7 |
+
scikit-learn
|
8 |
+
pandas
|
9 |
+
numpy
|
10 |
+
pytube
|
11 |
+
https://github.com/pyannote/pyannote-audio/archive/refs/heads/develop.zip
|
12 |
+
pyannote.core
|
13 |
+
gpuinfo
|
14 |
+
psutil
|
15 |
+
wave
|
16 |
+
demucs
|
17 |
+
moviepy
|
transcription.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#################################################################################################
|
2 |
+
# Taking code from https://huggingface.co/spaces/vumichien/Whisper_speaker_diarization/blob/main/app.py
|
3 |
+
|
4 |
+
from faster_whisper import WhisperModel
|
5 |
+
#import datetime
|
6 |
+
#import subprocess
|
7 |
+
import gradio as gr
|
8 |
+
from pathlib import Path
|
9 |
+
import pandas as pd
|
10 |
+
#import re
|
11 |
+
import time
|
12 |
+
import os
|
13 |
+
import numpy as np
|
14 |
+
from sklearn.cluster import AgglomerativeClustering
|
15 |
+
from sklearn.metrics import silhouette_score
|
16 |
+
|
17 |
+
from pytube import YouTube
|
18 |
+
#import yt_dlp
|
19 |
+
import torch
|
20 |
+
#import pyannote.audio
|
21 |
+
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
|
22 |
+
from pyannote.audio import Audio
|
23 |
+
from pyannote.core import Segment
|
24 |
+
|
25 |
+
from gpuinfo import GPUInfo
|
26 |
+
|
27 |
+
import wave
|
28 |
+
import contextlib
|
29 |
+
from transformers import pipeline
|
30 |
+
import psutil
|
31 |
+
|
32 |
+
embedding_model = PretrainedSpeakerEmbedding(
|
33 |
+
"speechbrain/spkrec-ecapa-voxceleb",
|
34 |
+
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
35 |
+
|
36 |
+
def fast_transcription(audio_file, whisper_model, language):
|
37 |
+
"""
|
38 |
+
# Transcribe youtube link using OpenAI Whisper
|
39 |
+
1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
|
40 |
+
2. Generating speaker embeddings for each segments.
|
41 |
+
3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
|
42 |
+
|
43 |
+
Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
|
44 |
+
Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio
|
45 |
+
"""
|
46 |
+
|
47 |
+
# model = whisper.load_model(whisper_model)
|
48 |
+
# model = WhisperModel(whisper_model, device="cuda", compute_type="int8_float16")
|
49 |
+
model = WhisperModel(whisper_model, compute_type="int8")
|
50 |
+
time_start = time.time()
|
51 |
+
# if(video_file_path == None):
|
52 |
+
# raise ValueError("Error no video input")
|
53 |
+
# print(video_file_path)
|
54 |
+
|
55 |
+
try:
|
56 |
+
# Get duration
|
57 |
+
with contextlib.closing(wave.open(audio_file,'r')) as f:
|
58 |
+
frames = f.getnframes()
|
59 |
+
rate = f.getframerate()
|
60 |
+
duration = frames / float(rate)
|
61 |
+
print(f"conversion to wav ready, duration of audio file: {duration}")
|
62 |
+
|
63 |
+
# Transcribe audio
|
64 |
+
options = dict(language=language, beam_size=5, best_of=5)
|
65 |
+
transcribe_options = dict(task="transcribe", **options)
|
66 |
+
segments_raw, info = model.transcribe(audio_file, **transcribe_options)
|
67 |
+
|
68 |
+
# Convert back to original openai format
|
69 |
+
segments = []
|
70 |
+
i = 0
|
71 |
+
for segment_chunk in segments_raw:
|
72 |
+
chunk = {}
|
73 |
+
chunk["start"] = segment_chunk.start
|
74 |
+
chunk["end"] = segment_chunk.end
|
75 |
+
chunk["text"] = segment_chunk.text
|
76 |
+
segments.append(chunk)
|
77 |
+
i += 1
|
78 |
+
print("transcribe audio done with fast whisper")
|
79 |
+
except Exception as e:
|
80 |
+
raise RuntimeError("Error converting video to audio")
|
81 |
+
|
82 |
+
#text from the list
|
83 |
+
|
84 |
+
return [str(s["start"]) + " " + s["text"] for s in segments] #pd.DataFrame(segments)
|
85 |
+
|
86 |
+
import datetime
|
87 |
+
|
88 |
+
def convert_time(secs):
|
89 |
+
return datetime.timedelta(seconds=round(secs))
|
90 |
+
|
91 |
+
def speech_to_text(audio_file, selected_source_lang, whisper_model, num_speakers):
|
92 |
+
"""
|
93 |
+
# Transcribe youtube link using OpenAI Whisper
|
94 |
+
1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
|
95 |
+
2. Generating speaker embeddings for each segments.
|
96 |
+
3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
|
97 |
+
|
98 |
+
Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
|
99 |
+
Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio
|
100 |
+
"""
|
101 |
+
|
102 |
+
# model = whisper.load_model(whisper_model)
|
103 |
+
# model = WhisperModel(whisper_model, device="cuda", compute_type="int8_float16")
|
104 |
+
model = WhisperModel(whisper_model, compute_type="int8")
|
105 |
+
time_start = time.time()
|
106 |
+
# if(video_file_path == None):
|
107 |
+
# raise ValueError("Error no video input")
|
108 |
+
# print(video_file_path)
|
109 |
+
|
110 |
+
try:
|
111 |
+
# # Read and convert youtube video
|
112 |
+
# _,file_ending = os.path.splitext(f'{video_file_path}')
|
113 |
+
# print(f'file enging is {file_ending}')
|
114 |
+
# audio_file = video_file_path.replace(file_ending, ".wav")
|
115 |
+
# print("starting conversion to wav")
|
116 |
+
# os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"')
|
117 |
+
|
118 |
+
# Get duration
|
119 |
+
with contextlib.closing(wave.open(audio_file,'r')) as f:
|
120 |
+
frames = f.getnframes()
|
121 |
+
rate = f.getframerate()
|
122 |
+
duration = frames / float(rate)
|
123 |
+
print(f"conversion to wav ready, duration of audio file: {duration}")
|
124 |
+
|
125 |
+
# Transcribe audio
|
126 |
+
options = dict(language=selected_source_lang, beam_size=5, best_of=5)
|
127 |
+
transcribe_options = dict(task="transcribe", **options)
|
128 |
+
segments_raw, info = model.transcribe(audio_file, **transcribe_options)
|
129 |
+
|
130 |
+
# Convert back to original openai format
|
131 |
+
segments = []
|
132 |
+
i = 0
|
133 |
+
for segment_chunk in segments_raw:
|
134 |
+
chunk = {}
|
135 |
+
chunk["start"] = segment_chunk.start
|
136 |
+
chunk["end"] = segment_chunk.end
|
137 |
+
chunk["text"] = segment_chunk.text
|
138 |
+
segments.append(chunk)
|
139 |
+
i += 1
|
140 |
+
print("transcribe audio done with fast whisper")
|
141 |
+
except Exception as e:
|
142 |
+
raise RuntimeError("Error converting video to audio")
|
143 |
+
|
144 |
+
try:
|
145 |
+
# Create embedding
|
146 |
+
def segment_embedding(segment):
|
147 |
+
audio = Audio()
|
148 |
+
start = segment["start"]
|
149 |
+
# Whisper overshoots the end timestamp in the last segment
|
150 |
+
end = min(duration, segment["end"])
|
151 |
+
clip = Segment(start, end)
|
152 |
+
waveform, sample_rate = audio.crop(audio_file, clip)
|
153 |
+
return embedding_model(waveform[None])
|
154 |
+
|
155 |
+
embeddings = np.zeros(shape=(len(segments), 192))
|
156 |
+
for i, segment in enumerate(segments):
|
157 |
+
embeddings[i] = segment_embedding(segment)
|
158 |
+
embeddings = np.nan_to_num(embeddings)
|
159 |
+
print(f'Embedding shape: {embeddings.shape}')
|
160 |
+
|
161 |
+
if num_speakers == 0:
|
162 |
+
# Find the best number of speakers
|
163 |
+
score_num_speakers = {}
|
164 |
+
|
165 |
+
for num_speakers in range(2, 10+1):
|
166 |
+
clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
|
167 |
+
score = silhouette_score(embeddings, clustering.labels_, metric='euclidean')
|
168 |
+
score_num_speakers[num_speakers] = score
|
169 |
+
|
170 |
+
best_num_speaker = max(score_num_speakers, key=lambda x:score_num_speakers[x])
|
171 |
+
print(f"The best number of speakers: {best_num_speaker} with {score_num_speakers[best_num_speaker]} score")
|
172 |
+
else:
|
173 |
+
best_num_speaker = num_speakers
|
174 |
+
|
175 |
+
# Assign speaker label
|
176 |
+
clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings)
|
177 |
+
labels = clustering.labels_
|
178 |
+
for i in range(len(segments)):
|
179 |
+
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
|
180 |
+
|
181 |
+
# Make output
|
182 |
+
objects = {
|
183 |
+
'Start' : [],
|
184 |
+
'End': [],
|
185 |
+
'Speaker': [],
|
186 |
+
'Text': []
|
187 |
+
}
|
188 |
+
text = ''
|
189 |
+
for (i, segment) in enumerate(segments):
|
190 |
+
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
|
191 |
+
objects['Start'].append(str(convert_time(segment["start"])))
|
192 |
+
objects['Speaker'].append(segment["speaker"])
|
193 |
+
if i != 0:
|
194 |
+
objects['End'].append(str(convert_time(segments[i - 1]["end"])))
|
195 |
+
objects['Text'].append(text)
|
196 |
+
text = ''
|
197 |
+
text += segment["text"] + ' '
|
198 |
+
objects['End'].append(str(convert_time(segments[i - 1]["end"])))
|
199 |
+
objects['Text'].append(text)
|
200 |
+
|
201 |
+
time_end = time.time()
|
202 |
+
time_diff = time_end - time_start
|
203 |
+
memory = psutil.virtual_memory()
|
204 |
+
gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
|
205 |
+
gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
|
206 |
+
gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
|
207 |
+
system_info = f"""
|
208 |
+
*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.*
|
209 |
+
*Processing time: {time_diff:.5} seconds.*
|
210 |
+
*GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}MiB.*
|
211 |
+
"""
|
212 |
+
save_path = "transcript_result.csv"
|
213 |
+
df_results = pd.DataFrame(objects)
|
214 |
+
#df_results.to_csv(save_path)
|
215 |
+
return df_results, system_info, save_path
|
216 |
+
|
217 |
+
except Exception as e:
|
218 |
+
raise RuntimeError("Error Running inference with local model", e)
|