File size: 10,217 Bytes
709da00
 
 
 
 
 
 
 
 
 
 
 
dd28b0b
 
 
2d57f5f
709da00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
740d8bb
 
 
 
 
 
 
709da00
 
 
740d8bb
 
 
 
 
 
 
709da00
 
 
 
1ca494b
709da00
 
 
 
2d57f5f
709da00
1ca494b
709da00
 
 
 
 
 
 
 
1ca494b
709da00
 
 
1ca494b
 
 
 
18d6db7
709da00
 
 
1ca494b
709da00
 
 
 
073094f
 
 
709da00
 
 
0115ad0
709da00
 
 
1ca494b
709da00
dd28b0b
709da00
dd28b0b
 
709da00
 
1ca494b
740d8bb
 
 
 
 
 
 
 
 
1ca494b
 
740d8bb
 
 
1ca494b
740d8bb
709da00
 
1ca494b
 
 
 
 
d733713
709da00
a754efe
 
 
 
 
18d6db7
a754efe
eb966da
709da00
a754efe
1ca494b
4878941
1ca494b
709da00
 
a754efe
709da00
 
1ca494b
 
709da00
 
 
 
 
 
 
1ca494b
709da00
 
 
1ca494b
 
709da00
 
 
 
1ca494b
 
 
 
 
 
 
 
 
 
 
709da00
 
2d57f5f
709da00
 
1ca494b
709da00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ca494b
 
 
 
 
 
 
 
 
 
709da00
 
 
 
 
 
 
 
1ca494b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
709da00
 
 
 
 
 
67a1802
709da00
 
4878941
1ca494b
 
709da00
a754efe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import gradio as gr
import os
import torch
import numpy as np
import random
from huggingface_hub import login, HfFolder
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForCausalLM, TextIteratorStreamer
from scipy.special import softmax
import logging
import spaces
from threading import Thread
from collections.abc import Iterator
import csv

# Increase CSV field size limit
csv.field_size_limit(1000000)

# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s')

# Set a seed for reproducibility
seed = 42
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
    torch.cuda.manual_seed_all(seed)

# Login to Hugging Face
token = os.getenv("hf_token")
HfFolder.save_token(token)
login(token)

model_paths = [
    'karths/binary_classification_train_port',
    'karths/binary_classification_train_perf',
    "karths/binary_classification_train_main",
    "karths/binary_classification_train_secu",
    "karths/binary_classification_train_reli",
    "karths/binary_classification_train_usab",
    "karths/binary_classification_train_comp"
]

quality_mapping = {
    'binary_classification_train_port': 'Portability',  
    'binary_classification_train_main': 'Maintainability',
    'binary_classification_train_secu': 'Security',
    'binary_classification_train_reli': 'Reliability',
    'binary_classification_train_usab': 'Usability',
    'binary_classification_train_perf': 'Performance',
    'binary_classification_train_comp': 'Compatibility'
}

# Pre-load models and tokenizer for quality prediction
tokenizer = AutoTokenizer.from_pretrained("distilroberta-base")
models = {path: AutoModelForSequenceClassification.from_pretrained(path) for path in model_paths}

def get_quality_name(model_name):
    return quality_mapping.get(model_name.split('/')[-1], "Unknown Quality")


def model_prediction(model, text, device):
    model.to(device)
    model.eval()
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
    inputs = {k: v.to(device) for k, v in inputs.items()}
    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
        probs = softmax(logits.cpu().numpy(), axis=1)
    avg_prob = np.mean(probs[:, 1])
    model.to("cpu")
    return avg_prob

# --- Llama 3.2 3B Model Setup ---
LLAMA_MAX_MAX_NEW_TOKENS = 512
LLAMA_DEFAULT_MAX_NEW_TOKENS = 512
LLAMA_MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "1024"))
llama_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
llama_model_id = "meta-llama/Llama-3.2-1B-Instruct"
llama_tokenizer = AutoTokenizer.from_pretrained(llama_model_id)
llama_model = AutoModelForCausalLM.from_pretrained(
    llama_model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
llama_model.eval()

if llama_tokenizer.pad_token is None:
    llama_tokenizer.pad_token = llama_tokenizer.eos_token

def llama_generate(
    message: str,
    max_new_tokens: int = LLAMA_DEFAULT_MAX_NEW_TOKENS,
    temperature: float = 0.3,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> str:

    inputs = llama_tokenizer(message, return_tensors="pt", padding=True, truncation=True, max_length=LLAMA_MAX_INPUT_TOKEN_LENGTH).to(llama_model.device)

    if inputs.input_ids.shape[1] > LLAMA_MAX_INPUT_TOKEN_LENGTH:
        inputs.input_ids = inputs.input_ids[:, -LLAMA_MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {LLAMA_MAX_INPUT_TOKEN_LENGTH} tokens.")

    with torch.no_grad():
        generate_ids = llama_model.generate(
            **inputs,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            top_p=top_p,
            top_k=top_k,
            temperature=temperature,
            num_beams=1,
            repetition_penalty=repetition_penalty,
            pad_token_id=llama_tokenizer.pad_token_id,
            eos_token_id=llama_tokenizer.eos_token_id,

        )
    output_text = llama_tokenizer.decode(generate_ids[0], skip_special_tokens=True)
    torch.cuda.empty_cache()
    return output_text


def generate_explanation(issue_text, top_quality):
    """Generates an explanation for the *single* top quality above threshold."""
    if not top_quality:
        return "<div style='color: red;'>No explanation available as no quality tags met the threshold.</div>"

    quality_name = top_quality[0][0]  # Get the name of the top quality

    prompt = f"""
Given the following issue description:
---
{issue_text}
---
Explain why this issue might be classified as a **{quality_name}** issue. Provide a concise explanation, relating it back to the issue description. Keep the explanation short and concise.
"""
    print(prompt)
    try:
        explanation = llama_generate(prompt)
        # Format for better readability, directly including the quality name.
        formatted_explanation = f"<p><b>{quality_name}:</b></p><p>{explanation}</p>"
        return f"<div style='overflow-y: scroll; max-height: 400px;'>{formatted_explanation}</div>"
    except Exception as e:
        logging.error(f"Error during Llama generation: {e}")
        return "<div style='color: red;'>An error occurred while generating the explanation.</div>"



# @spaces.GPU(duration=60)
def main_interface(text):
    if not text.strip():
        return "<div style='color: red;'>No text provided. Please enter a valid issue description.</div>", "", ""

    if len(text) < 30:
        return "<div style='color: red;'>Text is less than 30 characters.</div>", "", ""

    device = "cuda" if torch.cuda.is_available() else "cpu"
    results = []
    for model_path, model in models.items():
        quality_name = get_quality_name(model_path)
        avg_prob = model_prediction(model, text, device)
        if avg_prob >= 0.95:  # Keep *all* results above the threshold
            results.append((quality_name, avg_prob))
        logging.info(f"Model: {model_path}, Quality: {quality_name}, Average Probability: {avg_prob:.3f}")

    if not results:
        return "<div style='color: red;'>No recommendation. Prediction probability is below the threshold.</div>", "", ""

    # Sort and get the top result (if any meet the threshold)
    top_result = sorted(results, key=lambda x: x[1], reverse=True)
    if top_result:
        top_quality = top_result[:1] # Select only the top result
        output_html = render_html_output(top_quality)
        explanation = generate_explanation(text, top_quality)
    else: # Handle case no predictions >= 0.95
        output_html = "<div style='color: red;'>No quality tag met the prediction probability threshold (>= 0.95).</div>"
        explanation = ""


    return output_html, "", explanation

def render_html_output(top_qualities):
    #Simplified to show only the top prediction
    styles = """
    <style>
        .quality-container {
            font-family: Arial, sans-serif;
            text-align: center;
            margin-top: 20px;
        }
        .quality-label, .ranking {
            display: inline-block;
            padding: 0.5em 1em;
            font-size: 18px;
            font-weight: bold;
            color: white;
            background-color: #007bff;
            border-radius: 0.5rem;
            margin-right: 10px;
            box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
        }
    </style>
    """
    if not top_qualities: # Handle empty case
        return styles + "<div class='quality-container'>No Top Prediction</div>"

    quality, _ = top_qualities[0] #We know there is only one
    html_content = f"""
    <div class="quality-container">
        <span class="ranking">Top Prediction</span>
        <span class="quality-label">{quality}</span>
    </div>
    """
    return styles + html_content

example_texts = [
    ["The algorithm does not accurately distinguish between the positive and negative classes during edge cases.\n\nEnvironment: Production\nReproduction: Run the classifier on the test dataset with known edge cases."],
    ["The regression tests do not cover scenarios involving concurrent user sessions.\n\nEnvironment: Test automation suite\nReproduction: Update the test scripts to include tests for concurrent sessions."],
    ["There is frequent miscommunication between the development and QA teams regarding feature specifications.\n\nEnvironment: Inter-team meetings\nReproduction: Audit recent communication logs and meeting notes between the teams."],
    ["The service-oriented architecture does not effectively isolate failures, leading to cascading failures across services.\n\nEnvironment: Microservices architecture\nReproduction: Simulate a service failure and observe the impact on other services."]
]
# Improved CSS for better layout and appearance
css = """
.quality-container {
    font-family: Arial, sans-serif;
    text-align: center;
    margin-top: 20px;
    padding: 10px;
    border: 1px solid #ddd; /* Added border */
    border-radius: 8px; /* Rounded corners */
    background-color: #f9f9f9; /* Light background */
}
.quality-label, .ranking {
    display: inline-block;
    padding: 0.5em 1em;
    font-size: 18px;
    font-weight: bold;
    color: white;
    background-color: #007bff;
    border-radius: 0.5rem;
    margin-right: 10px;
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
}
#explanation {
  border: 1px solid #ccc;
  padding: 10px;
  margin-top: 10px;
  border-radius: 4px;
  background-color: #fff; /* White background for explanation */
  overflow-y: auto;  /* Ensure scrollbar appears if needed */
}
"""
interface = gr.Interface(
    fn=main_interface,
    inputs=gr.Textbox(lines=7, label="Issue Description", placeholder="Enter your issue text here"),
    outputs=[
        gr.HTML(label="Prediction Output"),
        gr.Textbox(label="Predictions", visible=False),
        gr.Markdown(label="Explanation")
    ],
    title="QualityTagger",
    description="This tool classifies text into different quality domains such as Security, Usability,Mantainability, Reliability etc., and provides explanations.",
    examples=example_texts,
    css=css  # Apply the CSS
)
interface.launch(share=True)