Initial commit
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: Petarda
|
3 |
-
emoji:
|
4 |
colorFrom: yellow
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
title: Petarda
|
3 |
+
emoji: 🤯
|
4 |
colorFrom: yellow
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
app.py
CHANGED
@@ -11,27 +11,27 @@ def trait_classifier(text: str) -> Dict[str, float]:
|
|
11 |
# Set up text classification pipeline
|
12 |
agr_classifier = pipeline(task="text-classification",
|
13 |
# Because our model is on Hugging Face already, we can pass in the model name directly
|
14 |
-
model="kar0lina/petarda_xlm-roberta-
|
15 |
device="cuda" if torch.cuda.is_available() else "cpu",
|
16 |
top_k=None) # return all possible scores (not just top-1)
|
17 |
con_classifier = pipeline(task="text-classification",
|
18 |
# Because our model is on Hugging Face already, we can pass in the model name directly
|
19 |
-
model="kar0lina/petarda_xlm-roberta-
|
20 |
device="cuda" if torch.cuda.is_available() else "cpu",
|
21 |
top_k=None) # return all possible scores (not just top-1)
|
22 |
ext_classifier = pipeline(task="text-classification",
|
23 |
# Because our model is on Hugging Face already, we can pass in the model name directly
|
24 |
-
model="kar0lina/petarda_xlm-roberta-
|
25 |
device="cuda" if torch.cuda.is_available() else "cpu",
|
26 |
top_k=None) # return all possible scores (not just top-1)
|
27 |
neu_classifier = pipeline(task="text-classification",
|
28 |
# Because our model is on Hugging Face already, we can pass in the model name directly
|
29 |
-
model="kar0lina/petarda_xlm-roberta-
|
30 |
device="cuda" if torch.cuda.is_available() else "cpu",
|
31 |
top_k=None) # return all possible scores (not just top-1)
|
32 |
ope_classifier = pipeline(task="text-classification",
|
33 |
# Because our model is on Hugging Face already, we can pass in the model name directly
|
34 |
-
model="kar0lina/petarda_xlm-roberta-
|
35 |
device="cuda" if torch.cuda.is_available() else "cpu",
|
36 |
top_k=None) # return all possible scores (not just top-1)
|
37 |
|
@@ -92,7 +92,7 @@ def trait_classifier(text: str) -> Dict[str, float]:
|
|
92 |
description = """
|
93 |
A text classifier for PErsonality Trait prediction using Ai model Roberta - Demo App.
|
94 |
|
95 |
-
Fine-tuned from [xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base)"""
|
96 |
|
97 |
|
98 |
demo = gr.Interface(fn=trait_classifier,
|
|
|
11 |
# Set up text classification pipeline
|
12 |
agr_classifier = pipeline(task="text-classification",
|
13 |
# Because our model is on Hugging Face already, we can pass in the model name directly
|
14 |
+
model="kar0lina/petarda_xlm-roberta-base_pandora1000-agr", # link to model on HF Hub
|
15 |
device="cuda" if torch.cuda.is_available() else "cpu",
|
16 |
top_k=None) # return all possible scores (not just top-1)
|
17 |
con_classifier = pipeline(task="text-classification",
|
18 |
# Because our model is on Hugging Face already, we can pass in the model name directly
|
19 |
+
model="kar0lina/petarda_xlm-roberta-base_pandora1000-con", # link to model on HF Hub
|
20 |
device="cuda" if torch.cuda.is_available() else "cpu",
|
21 |
top_k=None) # return all possible scores (not just top-1)
|
22 |
ext_classifier = pipeline(task="text-classification",
|
23 |
# Because our model is on Hugging Face already, we can pass in the model name directly
|
24 |
+
model="kar0lina/petarda_xlm-roberta-base_pandora1000-ext", # link to model on HF Hub
|
25 |
device="cuda" if torch.cuda.is_available() else "cpu",
|
26 |
top_k=None) # return all possible scores (not just top-1)
|
27 |
neu_classifier = pipeline(task="text-classification",
|
28 |
# Because our model is on Hugging Face already, we can pass in the model name directly
|
29 |
+
model="kar0lina/petarda_xlm-roberta-base_pandora1000-neu", # link to model on HF Hub
|
30 |
device="cuda" if torch.cuda.is_available() else "cpu",
|
31 |
top_k=None) # return all possible scores (not just top-1)
|
32 |
ope_classifier = pipeline(task="text-classification",
|
33 |
# Because our model is on Hugging Face already, we can pass in the model name directly
|
34 |
+
model="kar0lina/petarda_xlm-roberta-base_pandora1000-ope", # link to model on HF Hub
|
35 |
device="cuda" if torch.cuda.is_available() else "cpu",
|
36 |
top_k=None) # return all possible scores (not just top-1)
|
37 |
|
|
|
92 |
description = """
|
93 |
A text classifier for PErsonality Trait prediction using Ai model Roberta - Demo App.
|
94 |
|
95 |
+
Fine-tuned from [xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on Pandora dataset"""
|
96 |
|
97 |
|
98 |
demo = gr.Interface(fn=trait_classifier,
|