Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
# Load the pre-trained model | |
classifier = pipeline("text-classification", model='kanad13/emotion_detection_model', return_all_scores=True) | |
def classify_emotion(text): | |
# Get the predictions from the model | |
predictions = classifier(text) | |
# Find the emotion with the highest score | |
highest_score_emotion = max(predictions[0], key=lambda x: x['score']) | |
result = highest_score_emotion['label'] | |
return result | |
# Link to my blog post | |
blog_link = "For more details about this project, visit my [blog post](https://www.kunal-pathak.com/blog/Emotion-Detection-App/)." | |
# Create a Gradio interface | |
interface = gr.Interface( | |
fn=classify_emotion, # The function to call for predictions | |
inputs=gr.Textbox(lines=2, placeholder="Enter text here..."), # Input component | |
outputs=gr.Textbox(), # Output component | |
title="Emotion Detection in Text", | |
description="Enter a sentence, and the model will predict one of the following **6 emotions: anger, fear, joy, love, sadness, or surprise.** <br> If the sentence contains an emotion not in this list of 6 emotions, the model will output the closest matching emotion.", | |
article=blog_link, | |
allow_flagging="never" | |
) | |
# Launch the interface | |
interface.launch() | |