File size: 3,497 Bytes
35e2073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#!/usr/bin/env python2

import os
import numpy as np

import utils.utils_poses.ATE.trajectory_utils as tu
import utils.utils_poses.ATE.transformations as tf


def compute_relative_error(p_es, q_es, p_gt, q_gt, T_cm, dist, max_dist_diff,
                           accum_distances=[],
                           scale=1.0):

    if len(accum_distances) == 0:
        accum_distances = tu.get_distance_from_start(p_gt)
    comparisons = tu.compute_comparison_indices_length(
        accum_distances, dist, max_dist_diff)

    n_samples = len(comparisons)
    print('number of samples = {0} '.format(n_samples))
    if n_samples < 2:
        print("Too few samples! Will not compute.")
        return np.array([]), np.array([]), np.array([]), np.array([]), np.array([]),\
            np.array([]), np.array([])

    T_mc = np.linalg.inv(T_cm)
    errors = []
    for idx, c in enumerate(comparisons):
        if not c == -1:
            T_c1 = tu.get_rigid_body_trafo(q_es[idx, :], p_es[idx, :])
            T_c2 = tu.get_rigid_body_trafo(q_es[c, :], p_es[c, :])
            T_c1_c2 = np.dot(np.linalg.inv(T_c1), T_c2)
            T_c1_c2[:3, 3] *= scale

            T_m1 = tu.get_rigid_body_trafo(q_gt[idx, :], p_gt[idx, :])
            T_m2 = tu.get_rigid_body_trafo(q_gt[c, :], p_gt[c, :])
            T_m1_m2 = np.dot(np.linalg.inv(T_m1), T_m2)

            T_m1_m2_in_c1 = np.dot(T_cm, np.dot(T_m1_m2, T_mc))
            T_error_in_c2 = np.dot(np.linalg.inv(T_m1_m2_in_c1), T_c1_c2)
            T_c2_rot = np.eye(4)
            T_c2_rot[0:3, 0:3] = T_c2[0:3, 0:3]
            T_error_in_w = np.dot(T_c2_rot, np.dot(
                T_error_in_c2, np.linalg.inv(T_c2_rot)))
            errors.append(T_error_in_w)

    error_trans_norm = []
    error_trans_perc = []
    error_yaw = []
    error_gravity = []
    e_rot = []
    e_rot_deg_per_m = []
    for e in errors:
        tn = np.linalg.norm(e[0:3, 3])
        error_trans_norm.append(tn)
        error_trans_perc.append(tn / dist * 100)
        ypr_angles = tf.euler_from_matrix(e, 'rzyx')
        e_rot.append(tu.compute_angle(e))
        error_yaw.append(abs(ypr_angles[0])*180.0/np.pi)
        error_gravity.append(
            np.sqrt(ypr_angles[1]**2+ypr_angles[2]**2)*180.0/np.pi)
        e_rot_deg_per_m.append(e_rot[-1] / dist)
    return errors, np.array(error_trans_norm), np.array(error_trans_perc),\
        np.array(error_yaw), np.array(error_gravity), np.array(e_rot),\
        np.array(e_rot_deg_per_m)


def compute_absolute_error(p_es_aligned, q_es_aligned, p_gt, q_gt):
    e_trans_vec = (p_gt-p_es_aligned)
    e_trans = np.sqrt(np.sum(e_trans_vec**2, 1))
    

    # orientation error
    e_rot = np.zeros((len(e_trans,)))
    e_ypr = np.zeros(np.shape(p_es_aligned))
    for i in range(np.shape(p_es_aligned)[0]):
        R_we = tf.matrix_from_quaternion(q_es_aligned[i, :])
        R_wg = tf.matrix_from_quaternion(q_gt[i, :])
        e_R = np.dot(R_we, np.linalg.inv(R_wg))
        e_ypr[i, :] = tf.euler_from_matrix(e_R, 'rzyx')
        e_rot[i] = np.rad2deg(np.linalg.norm(tf.logmap_so3(e_R[:3, :3])))
    # scale drift
    motion_gt = np.diff(p_gt, 0)
    motion_es = np.diff(p_es_aligned, 0)
    dist_gt = np.sqrt(np.sum(np.multiply(motion_gt, motion_gt), 1))
    dist_es = np.sqrt(np.sum(np.multiply(motion_es, motion_es), 1))
    e_scale_perc = np.abs((np.divide(dist_es, dist_gt)-1.0) * 100)
    # ate = np.sqrt(np.mean(np.asarray(e_trans) ** 2)) 
    return e_trans, e_trans_vec, e_rot, e_ypr, e_scale_perc