File size: 23,550 Bytes
35e2073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use 
# under the terms of the LICENSE.md file.
#
# For inquiries contact  [email protected]
#

import torch
# from lietorch import SO3, SE3, Sim3, LieGroupParameter
import numpy as np
from utils.general_utils import inverse_sigmoid, get_expon_lr_func, build_rotation
from torch import nn
import os
from utils.system_utils import mkdir_p
from plyfile import PlyData, PlyElement
from utils.sh_utils import RGB2SH
from simple_knn._C import distCUDA2
from utils.graphics_utils import BasicPointCloud
from utils.general_utils import strip_symmetric, build_scaling_rotation
from scipy.spatial.transform import Rotation as R
from utils.pose_utils import rotation2quad, get_tensor_from_camera
from utils.graphics_utils import getWorld2View2

def quaternion_to_rotation_matrix(quaternion):
    """
    Convert a quaternion to a rotation matrix.
    
    Parameters:
    - quaternion: A tensor of shape (..., 4) representing quaternions.
    
    Returns:
    - A tensor of shape (..., 3, 3) representing rotation matrices.
    """
    # Ensure quaternion is of float type for computation
    quaternion = quaternion.float()
    
    # Normalize the quaternion to unit length
    quaternion = quaternion / quaternion.norm(p=2, dim=-1, keepdim=True)
    
    # Extract components
    w, x, y, z = quaternion[..., 0], quaternion[..., 1], quaternion[..., 2], quaternion[..., 3]
    
    # Compute rotation matrix components
    xx, yy, zz = x * x, y * y, z * z
    xy, xz, yz = x * y, x * z, y * z
    xw, yw, zw = x * w, y * w, z * w
    
    # Assemble the rotation matrix
    R = torch.stack([
        torch.stack([1 - 2 * (yy + zz),     2 * (xy - zw),     2 * (xz + yw)], dim=-1),
        torch.stack([    2 * (xy + zw), 1 - 2 * (xx + zz),     2 * (yz - xw)], dim=-1),
        torch.stack([    2 * (xz - yw),     2 * (yz + xw), 1 - 2 * (xx + yy)], dim=-1)
    ], dim=-2)
    
    return R


class GaussianModel:

    def setup_functions(self):
        def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation):
            L = build_scaling_rotation(scaling_modifier * scaling, rotation)
            actual_covariance = L @ L.transpose(1, 2)
            symm = strip_symmetric(actual_covariance)
            return symm
        
        self.scaling_activation = torch.exp
        self.scaling_inverse_activation = torch.log

        self.covariance_activation = build_covariance_from_scaling_rotation

        self.opacity_activation = torch.sigmoid
        self.inverse_opacity_activation = inverse_sigmoid

        self.rotation_activation = torch.nn.functional.normalize


    def __init__(self, sh_degree : int):
        self.active_sh_degree = 0
        self.max_sh_degree = sh_degree  
        self._xyz = torch.empty(0)
        self._features_dc = torch.empty(0)
        self._features_rest = torch.empty(0)
        self._scaling = torch.empty(0)
        self._rotation = torch.empty(0)
        self._opacity = torch.empty(0)
        self.max_radii2D = torch.empty(0)
        self.xyz_gradient_accum = torch.empty(0)
        self.denom = torch.empty(0)
        self.optimizer = None
        self.percent_dense = 0
        self.spatial_lr_scale = 0
        self.setup_functions()

    def capture(self):
        return (
            self.active_sh_degree,
            self._xyz,
            self._features_dc,
            self._features_rest,
            self._scaling,
            self._rotation,
            self._opacity,
            self.max_radii2D,
            self.xyz_gradient_accum,
            self.denom,
            self.optimizer.state_dict(),
            self.spatial_lr_scale,
            self.P,
        )
    
    def restore(self, model_args, training_args):
        (self.active_sh_degree, 
        self._xyz, 
        self._features_dc, 
        self._features_rest,
        self._scaling, 
        self._rotation, 
        self._opacity,
        self.max_radii2D, 
        xyz_gradient_accum, 
        denom,
        opt_dict, 
        self.spatial_lr_scale,
        self.P) = model_args
        self.training_setup(training_args)
        self.xyz_gradient_accum = xyz_gradient_accum
        self.denom = denom
        self.optimizer.load_state_dict(opt_dict)

    @property
    def get_scaling(self):
        return self.scaling_activation(self._scaling)
    
    @property
    def get_rotation(self):
        return self.rotation_activation(self._rotation)
    
    @property
    def get_xyz(self):
        return self._xyz
    
    def compute_relative_world_to_camera(self, R1, t1, R2, t2):
        # Create a row of zeros with a one at the end, for homogeneous coordinates
        zero_row = np.array([[0, 0, 0, 1]], dtype=np.float32)
        
        # Compute the inverse of the first extrinsic matrix
        E1_inv = np.hstack([R1.T, -R1.T @ t1.reshape(-1, 1)])  # Transpose and reshape for correct dimensions
        E1_inv = np.vstack([E1_inv, zero_row])  # Append the zero_row to make it a 4x4 matrix
        
        # Compute the second extrinsic matrix
        E2 = np.hstack([R2, -R2 @ t2.reshape(-1, 1)])  # No need to transpose R2
        E2 = np.vstack([E2, zero_row])  # Append the zero_row to make it a 4x4 matrix
        
        # Compute the relative transformation
        E_rel = E2 @ E1_inv
        
        return E_rel

    def init_RT_seq(self, cam_list):        
        poses =[]
        for cam in cam_list[1.0]:
            p = get_tensor_from_camera(cam.world_view_transform.transpose(0, 1)) # R T -> quat t
            poses.append(p)
        poses = torch.stack(poses)
        self.P = poses.cuda().requires_grad_(True)
        
    
    def get_RT(self, idx):
        pose = self.P[idx]
        return pose
    
    def get_RT_test(self, idx):
        pose = self.test_P[idx]
        return pose
    
    @property
    def get_features(self):
        features_dc = self._features_dc
        features_rest = self._features_rest
        return torch.cat((features_dc, features_rest), dim=1)
    
    @property
    def get_opacity(self):
        return self.opacity_activation(self._opacity)
    
    def get_covariance(self, scaling_modifier = 1):
        return self.covariance_activation(self.get_scaling, scaling_modifier, self._rotation)

    def oneupSHdegree(self):
        if self.active_sh_degree < self.max_sh_degree:
            self.active_sh_degree += 1

    def create_from_pcd(self, pcd : BasicPointCloud, spatial_lr_scale : float):

        # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # gradio

        self.spatial_lr_scale = spatial_lr_scale
        fused_point_cloud = torch.tensor(np.asarray(pcd.points)).float().cuda()
        fused_color = RGB2SH(torch.tensor(np.asarray(pcd.colors)).float().cuda())
        features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda()
        features[:, :3, 0 ] = fused_color
        features[:, 3:, 1:] = 0.0

        print("Number of points at initialisation : ", fused_point_cloud.shape[0])

        dist2 = torch.clamp_min(distCUDA2(torch.from_numpy(np.asarray(pcd.points)).float().cuda()), 0.0000001)
        scales = torch.log(torch.sqrt(dist2))[...,None].repeat(1, 3)
        rots = torch.zeros((fused_point_cloud.shape[0], 4), device="cuda")
        rots[:, 0] = 1

        opacities = inverse_sigmoid(0.1 * torch.ones((fused_point_cloud.shape[0], 1), dtype=torch.float, device="cuda"))

        self._xyz = nn.Parameter(fused_point_cloud.requires_grad_(True))
        self._features_dc = nn.Parameter(features[:,:,0:1].transpose(1, 2).contiguous().requires_grad_(True))
        self._features_rest = nn.Parameter(features[:,:,1:].transpose(1, 2).contiguous().requires_grad_(True))
        self._scaling = nn.Parameter(scales.requires_grad_(True))
        self._rotation = nn.Parameter(rots.requires_grad_(True))
        self._opacity = nn.Parameter(opacities.requires_grad_(True))
        self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")

    def training_setup(self, training_args):
        self.percent_dense = training_args.percent_dense
        self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
        self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")

        l = [
            {'params': [self._xyz], 'lr': training_args.position_lr_init * self.spatial_lr_scale, "name": "xyz"},
            {'params': [self._features_dc], 'lr': training_args.feature_lr, "name": "f_dc"},
            {'params': [self._features_rest], 'lr': training_args.feature_lr / 20.0, "name": "f_rest"},
            {'params': [self._opacity], 'lr': training_args.opacity_lr, "name": "opacity"},
            {'params': [self._scaling], 'lr': training_args.scaling_lr, "name": "scaling"},
            {'params': [self._rotation], 'lr': training_args.rotation_lr, "name": "rotation"},
        ]

        l_cam = [{'params': [self.P],'lr': training_args.rotation_lr*0.1, "name": "pose"},]

        l += l_cam

        self.optimizer = torch.optim.Adam(l, lr=0.0, eps=1e-15)
        self.xyz_scheduler_args = get_expon_lr_func(lr_init=training_args.position_lr_init*self.spatial_lr_scale,
                                                    lr_final=training_args.position_lr_final*self.spatial_lr_scale,
                                                    lr_delay_mult=training_args.position_lr_delay_mult,
                                                    max_steps=training_args.position_lr_max_steps)
        self.cam_scheduler_args = get_expon_lr_func(
                                                    # lr_init=0,
                                                    # lr_final=0,
                                                    lr_init=training_args.rotation_lr*0.1,
                                                    lr_final=training_args.rotation_lr*0.001,
                                                    # lr_init=training_args.position_lr_init*self.spatial_lr_scale*10,
                                                    # lr_final=training_args.position_lr_final*self.spatial_lr_scale*10,
                                                    lr_delay_mult=training_args.position_lr_delay_mult,
                                                    max_steps=1000)

    def update_learning_rate(self, iteration):
        ''' Learning rate scheduling per step '''
        for param_group in self.optimizer.param_groups:
            if param_group["name"] == "pose":
                lr = self.cam_scheduler_args(iteration)
                # print("pose learning rate", iteration, lr)
                param_group['lr'] = lr
            if param_group["name"] == "xyz":
                lr = self.xyz_scheduler_args(iteration)
                param_group['lr'] = lr
        # return lr

    def construct_list_of_attributes(self):
        l = ['x', 'y', 'z', 'nx', 'ny', 'nz']
        # All channels except the 3 DC
        for i in range(self._features_dc.shape[1]*self._features_dc.shape[2]):
            l.append('f_dc_{}'.format(i))
        for i in range(self._features_rest.shape[1]*self._features_rest.shape[2]):
            l.append('f_rest_{}'.format(i))
        l.append('opacity')
        for i in range(self._scaling.shape[1]):
            l.append('scale_{}'.format(i))
        for i in range(self._rotation.shape[1]):
            l.append('rot_{}'.format(i))
        return l

    def save_ply(self, path):
        mkdir_p(os.path.dirname(path))

        xyz = self._xyz.detach().cpu().numpy()
        normals = np.zeros_like(xyz)
        f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
        f_rest = self._features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
        opacities = self._opacity.detach().cpu().numpy()
        scale = self._scaling.detach().cpu().numpy()
        rotation = self._rotation.detach().cpu().numpy()

        dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()]

        elements = np.empty(xyz.shape[0], dtype=dtype_full)
        attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1)
        elements[:] = list(map(tuple, attributes))
        el = PlyElement.describe(elements, 'vertex')
        PlyData([el]).write(path)

    def reset_opacity(self):
        opacities_new = inverse_sigmoid(torch.min(self.get_opacity, torch.ones_like(self.get_opacity)*0.01))
        optimizable_tensors = self.replace_tensor_to_optimizer(opacities_new, "opacity")
        self._opacity = optimizable_tensors["opacity"]

    def load_ply(self, path):
        plydata = PlyData.read(path)

        xyz = np.stack((np.asarray(plydata.elements[0]["x"]),
                        np.asarray(plydata.elements[0]["y"]),
                        np.asarray(plydata.elements[0]["z"])),  axis=1)
        opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis]

        features_dc = np.zeros((xyz.shape[0], 3, 1))
        features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"])
        features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"])
        features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"])

        extra_f_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("f_rest_")]
        extra_f_names = sorted(extra_f_names, key = lambda x: int(x.split('_')[-1]))
        assert len(extra_f_names)==3*(self.max_sh_degree + 1) ** 2 - 3
        features_extra = np.zeros((xyz.shape[0], len(extra_f_names)))
        for idx, attr_name in enumerate(extra_f_names):
            features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name])
        # Reshape (P,F*SH_coeffs) to (P, F, SH_coeffs except DC)
        features_extra = features_extra.reshape((features_extra.shape[0], 3, (self.max_sh_degree + 1) ** 2 - 1))

        scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")]
        scale_names = sorted(scale_names, key = lambda x: int(x.split('_')[-1]))
        scales = np.zeros((xyz.shape[0], len(scale_names)))
        for idx, attr_name in enumerate(scale_names):
            scales[:, idx] = np.asarray(plydata.elements[0][attr_name])

        rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot")]
        rot_names = sorted(rot_names, key = lambda x: int(x.split('_')[-1]))
        rots = np.zeros((xyz.shape[0], len(rot_names)))
        for idx, attr_name in enumerate(rot_names):
            rots[:, idx] = np.asarray(plydata.elements[0][attr_name])

        self._xyz = nn.Parameter(torch.tensor(xyz, dtype=torch.float, device="cuda").requires_grad_(True))
        self._features_dc = nn.Parameter(torch.tensor(features_dc, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True))
        self._features_rest = nn.Parameter(torch.tensor(features_extra, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True))
        self._opacity = nn.Parameter(torch.tensor(opacities, dtype=torch.float, device="cuda").requires_grad_(True))
        self._scaling = nn.Parameter(torch.tensor(scales, dtype=torch.float, device="cuda").requires_grad_(True))
        self._rotation = nn.Parameter(torch.tensor(rots, dtype=torch.float, device="cuda").requires_grad_(True))

        self.active_sh_degree = self.max_sh_degree

    def replace_tensor_to_optimizer(self, tensor, name):
        optimizable_tensors = {}
        for group in self.optimizer.param_groups:
            if group["name"] == name:
                # breakpoint()
                stored_state = self.optimizer.state.get(group['params'][0], None)
                stored_state["exp_avg"] = torch.zeros_like(tensor)
                stored_state["exp_avg_sq"] = torch.zeros_like(tensor)

                del self.optimizer.state[group['params'][0]]
                group["params"][0] = nn.Parameter(tensor.requires_grad_(True))
                self.optimizer.state[group['params'][0]] = stored_state

                optimizable_tensors[group["name"]] = group["params"][0]
        return optimizable_tensors

    def _prune_optimizer(self, mask):
        optimizable_tensors = {}
        for group in self.optimizer.param_groups:
            stored_state = self.optimizer.state.get(group['params'][0], None)
            if stored_state is not None:
                stored_state["exp_avg"] = stored_state["exp_avg"][mask]
                stored_state["exp_avg_sq"] = stored_state["exp_avg_sq"][mask]

                del self.optimizer.state[group['params'][0]]
                group["params"][0] = nn.Parameter((group["params"][0][mask].requires_grad_(True)))
                self.optimizer.state[group['params'][0]] = stored_state

                optimizable_tensors[group["name"]] = group["params"][0]
            else:
                group["params"][0] = nn.Parameter(group["params"][0][mask].requires_grad_(True))
                optimizable_tensors[group["name"]] = group["params"][0]
        return optimizable_tensors

    def prune_points(self, mask):
        valid_points_mask = ~mask
        optimizable_tensors = self._prune_optimizer(valid_points_mask)

        self._xyz = optimizable_tensors["xyz"]
        self._features_dc = optimizable_tensors["f_dc"]
        self._features_rest = optimizable_tensors["f_rest"]
        self._opacity = optimizable_tensors["opacity"]
        self._scaling = optimizable_tensors["scaling"]
        self._rotation = optimizable_tensors["rotation"]

        self.xyz_gradient_accum = self.xyz_gradient_accum[valid_points_mask]

        self.denom = self.denom[valid_points_mask]
        self.max_radii2D = self.max_radii2D[valid_points_mask]

    def cat_tensors_to_optimizer(self, tensors_dict):
        optimizable_tensors = {}
        for group in self.optimizer.param_groups:
            assert len(group["params"]) == 1
            extension_tensor = tensors_dict[group["name"]]
            stored_state = self.optimizer.state.get(group['params'][0], None)
            if stored_state is not None:

                stored_state["exp_avg"] = torch.cat((stored_state["exp_avg"], torch.zeros_like(extension_tensor)), dim=0)
                stored_state["exp_avg_sq"] = torch.cat((stored_state["exp_avg_sq"], torch.zeros_like(extension_tensor)), dim=0)

                del self.optimizer.state[group['params'][0]]
                group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True))
                self.optimizer.state[group['params'][0]] = stored_state

                optimizable_tensors[group["name"]] = group["params"][0]
            else:
                group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True))
                optimizable_tensors[group["name"]] = group["params"][0]

        return optimizable_tensors

    def densification_postfix(self, new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation):
        d = {"xyz": new_xyz,
        "f_dc": new_features_dc,
        "f_rest": new_features_rest,
        "opacity": new_opacities,
        "scaling" : new_scaling,
        "rotation" : new_rotation}

        optimizable_tensors = self.cat_tensors_to_optimizer(d)
        self._xyz = optimizable_tensors["xyz"]
        self._features_dc = optimizable_tensors["f_dc"]
        self._features_rest = optimizable_tensors["f_rest"]
        self._opacity = optimizable_tensors["opacity"]
        self._scaling = optimizable_tensors["scaling"]
        self._rotation = optimizable_tensors["rotation"]

        self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
        self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
        self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")

    def densify_and_split(self, grads, grad_threshold, scene_extent, N=2):
        n_init_points = self.get_xyz.shape[0]
        # Extract points that satisfy the gradient condition
        padded_grad = torch.zeros((n_init_points), device="cuda")
        padded_grad[:grads.shape[0]] = grads.squeeze()
        selected_pts_mask = torch.where(padded_grad >= grad_threshold, True, False)
        selected_pts_mask = torch.logical_and(selected_pts_mask,
                                              torch.max(self.get_scaling, dim=1).values > self.percent_dense*scene_extent)

        stds = self.get_scaling[selected_pts_mask].repeat(N,1)
        means =torch.zeros((stds.size(0), 3),device="cuda")
        samples = torch.normal(mean=means, std=stds)
        rots = build_rotation(self._rotation[selected_pts_mask]).repeat(N,1,1)
        new_xyz = torch.bmm(rots, samples.unsqueeze(-1)).squeeze(-1) + self.get_xyz[selected_pts_mask].repeat(N, 1)
        new_scaling = self.scaling_inverse_activation(self.get_scaling[selected_pts_mask].repeat(N,1) / (0.8*N))
        new_rotation = self._rotation[selected_pts_mask].repeat(N,1)
        new_features_dc = self._features_dc[selected_pts_mask].repeat(N,1,1)
        new_features_rest = self._features_rest[selected_pts_mask].repeat(N,1,1)
        new_opacity = self._opacity[selected_pts_mask].repeat(N,1)

        self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacity, new_scaling, new_rotation)

        prune_filter = torch.cat((selected_pts_mask, torch.zeros(N * selected_pts_mask.sum(), device="cuda", dtype=bool)))
        self.prune_points(prune_filter)

    def densify_and_clone(self, grads, grad_threshold, scene_extent):
        # Extract points that satisfy the gradient condition
        selected_pts_mask = torch.where(torch.norm(grads, dim=-1) >= grad_threshold, True, False)
        selected_pts_mask = torch.logical_and(selected_pts_mask,
                                              torch.max(self.get_scaling, dim=1).values <= self.percent_dense*scene_extent)
        
        new_xyz = self._xyz[selected_pts_mask]
        new_features_dc = self._features_dc[selected_pts_mask]
        new_features_rest = self._features_rest[selected_pts_mask]
        new_opacities = self._opacity[selected_pts_mask]
        new_scaling = self._scaling[selected_pts_mask]
        new_rotation = self._rotation[selected_pts_mask]

        self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation)

    def densify_and_prune(self, max_grad, min_opacity, extent, max_screen_size):
        grads = self.xyz_gradient_accum / self.denom
        grads[grads.isnan()] = 0.0

        # self.densify_and_clone(grads, max_grad, extent)
        # self.densify_and_split(grads, max_grad, extent)

        prune_mask = (self.get_opacity < min_opacity).squeeze()
        if max_screen_size:
            big_points_vs = self.max_radii2D > max_screen_size
            big_points_ws = self.get_scaling.max(dim=1).values > 0.1 * extent
            prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws)
        self.prune_points(prune_mask)

        torch.cuda.empty_cache()

    def add_densification_stats(self, viewspace_point_tensor, update_filter):
        self.xyz_gradient_accum[update_filter] += torch.norm(viewspace_point_tensor.grad[update_filter,:2], dim=-1, keepdim=True)
        self.denom[update_filter] += 1