### 1. Imports and class names setup ### import gradio as gr import os import torch from model import create_effnet_b1 from timeit import default_timer as timer from typing import Tuple, Dict # Setup class names (Hard Coded) class_names = ['bengal', 'domestic_shorthair', 'maine_coon', 'ragdoll', 'siamese'] ### 2. Model and transforms preparation ### # Create EffNetB1 model effnet_b1, effnet_b1_transforms = create_effnet_b1() # Load saved weights effnet_b1.load_state_dict( torch.load( f="effnet_b1.pth", map_location=torch.device("cpu"), # load to CPU ) ) ### 3. Predict function ### # Create predict function def predict(img) -> Tuple[Dict, float]: """Transforms and performs a prediction on img and returns prediction and time taken. """ # Start the timer start_time = timer() # Transform the target image and add a batch dimension img = effnetb0_transforms(img).unsqueeze(0) # Put model into evaluation mode and turn on inference mode effnetb0.eval() with torch.inference_mode(): # Pass the transformed image through the model and turn the prediction logits into prediction probabilities pred_probs = torch.softmax(effnetb0(img), dim=1) # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter) pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} # Calculate the prediction time pred_time = round(timer() - start_time, 5) # Return the prediction dictionary and prediction time return pred_labels_and_probs, pred_time ### 4. Gradio app ### # Create title, description and article strings title = "Cat Breed Classifier" description = "This application is designed to categorize cat breeds and is limited to only Bengal, Domestic Shorthair, Maine Coon, Ragdoll, and Siamese breeds." article = "Created by kaiku meoowww 😻 " # Create examples list from "examples/" directory example_list = [["examples/" + example] for example in os.listdir("examples")] # Create the Gradio demo demo = gr.Interface(fn=predict, # mapping function from input to output inputs=gr.Image(type="pil"), # what are the inputs? outputs=[gr.Label(num_top_classes=5, label="Predictions"), # what are the outputs? gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs # Create examples list from "examples/" directory examples=example_list, title=title, description=description, article=article) # Launch the demo! demo.launch()