Spaces:
Sleeping
Sleeping
Upload 11 files
Browse files- Dockerfile +29 -0
- agent_state.py +9 -0
- main.py +150 -0
- requirements.txt +6 -0
- startup.sh +17 -0
- tools/__init__.py +0 -0
- tools/feedback.py +0 -0
- tools/news_reporter.py +21 -0
- tools/saver.py +7 -0
- tools/transcriber.py +15 -0
- workflow.py +37 -0
Dockerfile
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use an official Python runtime as a parent image
|
2 |
+
FROM python:3.10-slim
|
3 |
+
|
4 |
+
# Set the working directory in the container
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Install system dependencies needed for Ollama
|
8 |
+
RUN apt-get update && apt-get install -y curl
|
9 |
+
|
10 |
+
# Install Ollama using the official installation script
|
11 |
+
RUN curl -fsSL https://ollama.com/install.sh | sh
|
12 |
+
|
13 |
+
# Copy your application's requirements file
|
14 |
+
COPY requirements.txt .
|
15 |
+
|
16 |
+
# Install Python packages
|
17 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
18 |
+
|
19 |
+
# Copy all your application files into the container
|
20 |
+
COPY . .
|
21 |
+
|
22 |
+
# Make the startup script executable
|
23 |
+
RUN chmod +x ./startup.sh
|
24 |
+
|
25 |
+
# Expose the port Gradio runs on
|
26 |
+
EXPOSE 7860
|
27 |
+
|
28 |
+
# Set the command to run when the container starts
|
29 |
+
CMD ["./startup.sh"]
|
agent_state.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel, Field
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
class AgentState(BaseModel):
|
5 |
+
audio_path: str
|
6 |
+
transcribed_text: Optional[str] = None
|
7 |
+
news_report: Optional[str] = None
|
8 |
+
feedback: Optional[str] = Field(default=None, description="Feedback from the human for revision")
|
9 |
+
approved: bool = Field(default=False, description="Has the human approved the summary?")
|
main.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from agent_state import AgentState
|
3 |
+
from workflow import build_graph
|
4 |
+
from tools.transcriber import transcribe_fast # We need to import the tool directly
|
5 |
+
from datetime import datetime
|
6 |
+
|
7 |
+
# --- Main Application Logic ---
|
8 |
+
|
9 |
+
# Build the graph once when the app starts
|
10 |
+
app = build_graph()
|
11 |
+
|
12 |
+
# This function is now ONLY for transcription
|
13 |
+
def run_transcription(audio_file):
|
14 |
+
"""
|
15 |
+
Step 1: Runs ONLY the transcription tool and prepares the state.
|
16 |
+
"""
|
17 |
+
if not audio_file:
|
18 |
+
return None, None, gr.update(visible=False)
|
19 |
+
|
20 |
+
print("--- Step 1: Transcribing Audio ---")
|
21 |
+
# Create a new agent state for this session
|
22 |
+
initial_state = AgentState(audio_path=audio_file)
|
23 |
+
|
24 |
+
# Call the transcription tool directly
|
25 |
+
state_after_transcription = transcribe_fast(initial_state)
|
26 |
+
|
27 |
+
# Return the text for the UI, the updated state for the session,
|
28 |
+
# and make the next button visible.
|
29 |
+
return (
|
30 |
+
state_after_transcription,
|
31 |
+
state_after_transcription.transcribed_text,
|
32 |
+
gr.update(visible=True)
|
33 |
+
)
|
34 |
+
|
35 |
+
# This new function handles the rest of the agent's workflow
|
36 |
+
def generate_report(current_state):
|
37 |
+
"""
|
38 |
+
Step 2: Takes the transcribed state and runs it through the main graph
|
39 |
+
to generate the report and enable the review process.
|
40 |
+
"""
|
41 |
+
if not current_state or not current_state.transcribed_text:
|
42 |
+
return current_state, "Transcription not found. Please complete Step 1.", gr.update(visible=False)
|
43 |
+
|
44 |
+
print("--- Step 2: Generating News Report ---")
|
45 |
+
|
46 |
+
final_state = None
|
47 |
+
# Run the stream. The graph will start from the news_reporter node
|
48 |
+
# because the transcribed_text already exists.
|
49 |
+
# Note: Your graph needs to be robust enough to handle this.
|
50 |
+
# A simple way is to have the first node check if transcription exists.
|
51 |
+
# If not, run it. If yes, skip to the next node.
|
52 |
+
# For now, we assume the graph continues from where the state is.
|
53 |
+
|
54 |
+
# A simplified invocation for this flow would be to call the reporter tool directly
|
55 |
+
# and then handle the loop, but let's stick to the graph.
|
56 |
+
# To make this work, we'll manually call the next step for clarity.
|
57 |
+
|
58 |
+
from tools.news_reporter import create_news_report # this is our tool
|
59 |
+
state_after_report = create_news_report(current_state)
|
60 |
+
|
61 |
+
return state_after_report, state_after_report.news_report, gr.update(visible=True)
|
62 |
+
|
63 |
+
|
64 |
+
def handle_revision(feedback, current_state):
|
65 |
+
"""
|
66 |
+
Handles the revision loop.
|
67 |
+
"""
|
68 |
+
if not feedback:
|
69 |
+
return current_state, current_state.news_report, "Please provide feedback to revise."
|
70 |
+
|
71 |
+
print("Revising with feedback...")
|
72 |
+
current_state.feedback = feedback
|
73 |
+
current_state.approved = False
|
74 |
+
|
75 |
+
# Re-run the summarization/report tool with the new feedback
|
76 |
+
from tools.news_reporter import create_news_report
|
77 |
+
state_after_revision = create_news_report(current_state)
|
78 |
+
|
79 |
+
return state_after_revision, state_after_revision.news_report, "✅ Report revised. Please review again."
|
80 |
+
|
81 |
+
|
82 |
+
def handle_save(current_state):
|
83 |
+
"""
|
84 |
+
Handles the final save action.
|
85 |
+
"""
|
86 |
+
print("Saving final report...")
|
87 |
+
from tools.saver import save_summary
|
88 |
+
save_summary(current_state) # Call the save tool directly
|
89 |
+
|
90 |
+
return "✅ Final report has been saved successfully!"
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
#####################################
|
96 |
+
# --- Gradio UI ---
|
97 |
+
#####################################
|
98 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
99 |
+
gr.Markdown("# 🎙️ Audio to News Agent")
|
100 |
+
gr.Markdown(f"### Reporting live, {datetime.now().strftime('%B %d, %Y')}.")
|
101 |
+
|
102 |
+
agent_state_gr = gr.State(value=None)
|
103 |
+
|
104 |
+
with gr.Row():
|
105 |
+
with gr.Column(scale=1):
|
106 |
+
gr.Markdown("### Step 1: Transcribe Audio")
|
107 |
+
audio_input = gr.Audio(type="filepath", sources=["upload", "microphone"], label="Upload or Record")
|
108 |
+
transcribe_btn = gr.Button("1️⃣ Transcribe Audio", variant="secondary")
|
109 |
+
|
110 |
+
# This button will appear after step 1 is complete
|
111 |
+
generate_btn = gr.Button("2️⃣ Generate News Report", variant="primary", visible=False)
|
112 |
+
|
113 |
+
with gr.Column(scale=2):
|
114 |
+
transcribed_output = gr.Textbox(label="📝 Transcription Result", lines=5, interactive=False)
|
115 |
+
report_output = gr.Textbox(label="📰 Generated News Report", lines=10, interactive=False)
|
116 |
+
|
117 |
+
with gr.Group(visible=False) as review_group:
|
118 |
+
feedback_input = gr.Textbox(label="❌ Provide Feedback for Revision", lines=2)
|
119 |
+
with gr.Row():
|
120 |
+
revise_btn = gr.Button("🔁 Revise Report")
|
121 |
+
save_btn = gr.Button("✅ Approve & Save Report", variant="primary")
|
122 |
+
status_output = gr.Textbox(label="Status", interactive=False)
|
123 |
+
|
124 |
+
# --- Button Click Logic ---
|
125 |
+
|
126 |
+
transcribe_btn.click(
|
127 |
+
fn=run_transcription,
|
128 |
+
inputs=[audio_input],
|
129 |
+
outputs=[agent_state_gr, transcribed_output, generate_btn]
|
130 |
+
)
|
131 |
+
|
132 |
+
generate_btn.click(
|
133 |
+
fn=generate_report,
|
134 |
+
inputs=[agent_state_gr],
|
135 |
+
outputs=[agent_state_gr, report_output, review_group]
|
136 |
+
)
|
137 |
+
|
138 |
+
revise_btn.click(
|
139 |
+
fn=handle_revision,
|
140 |
+
inputs=[feedback_input, agent_state_gr],
|
141 |
+
outputs=[agent_state_gr, report_output, status_output]
|
142 |
+
)
|
143 |
+
|
144 |
+
save_btn.click(
|
145 |
+
fn=handle_save,
|
146 |
+
inputs=[agent_state_gr],
|
147 |
+
outputs=[status_output]
|
148 |
+
)
|
149 |
+
|
150 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
faster-whisper==1.1.1
|
2 |
+
gradio==5.38.2
|
3 |
+
langchain-ollama==0.3.6
|
4 |
+
langgraph==0.5.4
|
5 |
+
pydantic==2.11.7
|
6 |
+
typing==3.10.0.0
|
startup.sh
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
# Start the Ollama server in the background
|
4 |
+
ollama serve &
|
5 |
+
|
6 |
+
# Wait a few seconds for the server to be ready
|
7 |
+
sleep 5
|
8 |
+
|
9 |
+
# Pull the model that your application needs
|
10 |
+
echo "Pulling model: gemma3n:e4b-it-q4_K_M..."
|
11 |
+
ollama pull gemma3n:e4b-it-q4_K_M
|
12 |
+
|
13 |
+
echo "Model pulled. Starting Gradio app..."
|
14 |
+
|
15 |
+
# Start the Gradio application
|
16 |
+
# It will be accessible on port 7860
|
17 |
+
python main.py
|
tools/__init__.py
ADDED
File without changes
|
tools/feedback.py
ADDED
File without changes
|
tools/news_reporter.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_ollama.llms import OllamaLLM
|
2 |
+
from agent_state import AgentState
|
3 |
+
|
4 |
+
llm = OllamaLLM(model="gemma3n:e4b-it-q4_K_M",
|
5 |
+
base_url="http://127.0.0.1:11434")
|
6 |
+
|
7 |
+
def create_news_report(state: AgentState) -> AgentState:
|
8 |
+
if state.feedback:
|
9 |
+
prompt = f"""You are revising a news report based on the user's feedback:
|
10 |
+
Transcription: "{state.transcribed_text}"
|
11 |
+
Old Report: "{state.news_report}"
|
12 |
+
Feedback: "{state.feedback}" """
|
13 |
+
else:
|
14 |
+
prompt = f"""Write a professional news article based on this transcription:
|
15 |
+
"{state.transcribed_text}" """
|
16 |
+
|
17 |
+
report = llm.invoke(prompt)
|
18 |
+
state.news_report = report
|
19 |
+
state.feedback = None
|
20 |
+
state.approved = False
|
21 |
+
return state
|
tools/saver.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from agent_state import AgentState
|
2 |
+
|
3 |
+
def save_summary(state: AgentState) -> AgentState:
|
4 |
+
with open("news_report.txt", "w") as f:
|
5 |
+
f.write(state.news_report)
|
6 |
+
print("✅ Report saved to news_report.txt")
|
7 |
+
return state
|
tools/transcriber.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from faster_whisper import WhisperModel
|
2 |
+
from agent_state import AgentState
|
3 |
+
import os
|
4 |
+
|
5 |
+
model = WhisperModel("base", device="cpu", compute_type="int8")
|
6 |
+
|
7 |
+
def transcribe_fast(state: AgentState) -> AgentState:
|
8 |
+
print("---TRANSCRIBING AUDIO---")
|
9 |
+
if not os.path.exists(state.audio_path):
|
10 |
+
raise FileNotFoundError(f"File not found: {state.audio_path}")
|
11 |
+
|
12 |
+
segments, info = model.transcribe(state.audio_path, vad_filter=False)
|
13 |
+
state.transcribed_text = "".join(segment.text for segment in segments)
|
14 |
+
return state
|
15 |
+
|
workflow.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langgraph.graph import StateGraph, START, END
|
2 |
+
from agent_state import AgentState
|
3 |
+
from tools.transcriber import transcribe_fast
|
4 |
+
from tools.news_reporter import create_news_report
|
5 |
+
from tools.saver import save_summary
|
6 |
+
|
7 |
+
# In your workflow.py
|
8 |
+
|
9 |
+
# ... (imports and node definitions for transcribe, create_news_report, save_summary)
|
10 |
+
|
11 |
+
def build_graph():
|
12 |
+
workflow = StateGraph(AgentState)
|
13 |
+
|
14 |
+
workflow.add_node("transcriber", transcribe_fast)
|
15 |
+
workflow.add_node("news_reporter", create_news_report) # Renamed for clarity
|
16 |
+
workflow.add_node("saver", save_summary)
|
17 |
+
|
18 |
+
# This is the conditional logic based on human approval
|
19 |
+
def check_approval(state: AgentState):
|
20 |
+
return "saver" if state.approved else "news_reporter"
|
21 |
+
|
22 |
+
# Define the graph's structure
|
23 |
+
workflow.add_edge(START, "transcriber")
|
24 |
+
workflow.add_edge("transcriber", "news_reporter")
|
25 |
+
|
26 |
+
# The conditional edge for the loop/save decision
|
27 |
+
workflow.add_conditional_edges(
|
28 |
+
"news_reporter",
|
29 |
+
check_approval,
|
30 |
+
{
|
31 |
+
"saver": "saver",
|
32 |
+
"news_reporter": "news_reporter" # This allows looping back if feedback is given
|
33 |
+
}
|
34 |
+
)
|
35 |
+
workflow.add_edge("saver", END)
|
36 |
+
|
37 |
+
return workflow.compile()
|