Spaces:
Runtime error
Runtime error
| # ------------------------------------------------------------------------------ | |
| # Copyright (c) Microsoft | |
| # Licensed under the MIT License. | |
| # Written by Bin Xiao ([email protected]) | |
| # ------------------------------------------------------------------------------ | |
| from __future__ import absolute_import | |
| from __future__ import division | |
| from __future__ import print_function | |
| import numpy as np | |
| import cv2 | |
| import torch | |
| class BRG2Tensor_transform(object): | |
| def __call__(self, pic): | |
| img = torch.from_numpy(pic.transpose((2, 0, 1))) | |
| if isinstance(img, torch.ByteTensor): | |
| return img.float() | |
| else: | |
| return img | |
| class BGR2RGB_transform(object): | |
| def __call__(self, tensor): | |
| return tensor[[2,1,0],:,:] | |
| def flip_back(output_flipped, matched_parts): | |
| ''' | |
| ouput_flipped: numpy.ndarray(batch_size, num_joints, height, width) | |
| ''' | |
| assert output_flipped.ndim == 4,\ | |
| 'output_flipped should be [batch_size, num_joints, height, width]' | |
| output_flipped = output_flipped[:, :, :, ::-1] | |
| for pair in matched_parts: | |
| tmp = output_flipped[:, pair[0], :, :].copy() | |
| output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :] | |
| output_flipped[:, pair[1], :, :] = tmp | |
| return output_flipped | |
| def fliplr_joints(joints, joints_vis, width, matched_parts): | |
| """ | |
| flip coords | |
| """ | |
| # Flip horizontal | |
| joints[:, 0] = width - joints[:, 0] - 1 | |
| # Change left-right parts | |
| for pair in matched_parts: | |
| joints[pair[0], :], joints[pair[1], :] = \ | |
| joints[pair[1], :], joints[pair[0], :].copy() | |
| joints_vis[pair[0], :], joints_vis[pair[1], :] = \ | |
| joints_vis[pair[1], :], joints_vis[pair[0], :].copy() | |
| return joints*joints_vis, joints_vis | |
| def transform_preds(coords, center, scale, input_size): | |
| target_coords = np.zeros(coords.shape) | |
| trans = get_affine_transform(center, scale, 0, input_size, inv=1) | |
| for p in range(coords.shape[0]): | |
| target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans) | |
| return target_coords | |
| def transform_parsing(pred, center, scale, width, height, input_size): | |
| trans = get_affine_transform(center, scale, 0, input_size, inv=1) | |
| target_pred = cv2.warpAffine( | |
| pred, | |
| trans, | |
| (int(width), int(height)), #(int(width), int(height)), | |
| flags=cv2.INTER_NEAREST, | |
| borderMode=cv2.BORDER_CONSTANT, | |
| borderValue=(0)) | |
| return target_pred | |
| def transform_logits(logits, center, scale, width, height, input_size): | |
| trans = get_affine_transform(center, scale, 0, input_size, inv=1) | |
| channel = logits.shape[2] | |
| target_logits = [] | |
| for i in range(channel): | |
| target_logit = cv2.warpAffine( | |
| logits[:,:,i], | |
| trans, | |
| (int(width), int(height)), #(int(width), int(height)), | |
| flags=cv2.INTER_LINEAR, | |
| borderMode=cv2.BORDER_CONSTANT, | |
| borderValue=(0)) | |
| target_logits.append(target_logit) | |
| target_logits = np.stack(target_logits,axis=2) | |
| return target_logits | |
| def get_affine_transform(center, | |
| scale, | |
| rot, | |
| output_size, | |
| shift=np.array([0, 0], dtype=np.float32), | |
| inv=0): | |
| if not isinstance(scale, np.ndarray) and not isinstance(scale, list): | |
| print(scale) | |
| scale = np.array([scale, scale]) | |
| scale_tmp = scale | |
| src_w = scale_tmp[0] | |
| dst_w = output_size[1] | |
| dst_h = output_size[0] | |
| rot_rad = np.pi * rot / 180 | |
| src_dir = get_dir([0, src_w * -0.5], rot_rad) | |
| dst_dir = np.array([0, (dst_w-1) * -0.5], np.float32) | |
| src = np.zeros((3, 2), dtype=np.float32) | |
| dst = np.zeros((3, 2), dtype=np.float32) | |
| src[0, :] = center + scale_tmp * shift | |
| src[1, :] = center + src_dir + scale_tmp * shift | |
| dst[0, :] = [(dst_w-1) * 0.5, (dst_h-1) * 0.5] | |
| dst[1, :] = np.array([(dst_w-1) * 0.5, (dst_h-1) * 0.5]) + dst_dir | |
| src[2:, :] = get_3rd_point(src[0, :], src[1, :]) | |
| dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :]) | |
| if inv: | |
| trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) | |
| else: | |
| trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) | |
| return trans | |
| def affine_transform(pt, t): | |
| new_pt = np.array([pt[0], pt[1], 1.]).T | |
| new_pt = np.dot(t, new_pt) | |
| return new_pt[:2] | |
| def get_3rd_point(a, b): | |
| direct = a - b | |
| return b + np.array([-direct[1], direct[0]], dtype=np.float32) | |
| def get_dir(src_point, rot_rad): | |
| sn, cs = np.sin(rot_rad), np.cos(rot_rad) | |
| src_result = [0, 0] | |
| src_result[0] = src_point[0] * cs - src_point[1] * sn | |
| src_result[1] = src_point[0] * sn + src_point[1] * cs | |
| return src_result | |
| def crop(img, center, scale, output_size, rot=0): | |
| trans = get_affine_transform(center, scale, rot, output_size) | |
| dst_img = cv2.warpAffine(img, | |
| trans, | |
| (int(output_size[1]), int(output_size[0])), | |
| flags=cv2.INTER_LINEAR) | |
| return dst_img | |