Spaces:
Runtime error
Runtime error
| ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | |
| ## Created by: Hang Zhang | |
| ## ECE Department, Rutgers University | |
| ## Email: [email protected] | |
| ## Copyright (c) 2017 | |
| ## | |
| ## This source code is licensed under the MIT-style license found in the | |
| ## LICENSE file in the root directory of this source tree | |
| ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | |
| """Encoding Data Parallel""" | |
| import threading | |
| import functools | |
| import torch | |
| from torch.autograd import Variable, Function | |
| import torch.cuda.comm as comm | |
| from torch.nn.parallel.data_parallel import DataParallel | |
| from torch.nn.parallel.parallel_apply import get_a_var | |
| from torch.nn.parallel._functions import ReduceAddCoalesced, Broadcast | |
| torch_ver = torch.__version__[:3] | |
| __all__ = ['allreduce', 'DataParallelModel', 'DataParallelCriterion', 'patch_replication_callback'] | |
| def allreduce(*inputs): | |
| """Cross GPU all reduce autograd operation for calculate mean and | |
| variance in SyncBN. | |
| """ | |
| return AllReduce.apply(*inputs) | |
| class AllReduce(Function): | |
| def forward(ctx, num_inputs, *inputs): | |
| ctx.num_inputs = num_inputs | |
| ctx.target_gpus = [inputs[i].get_device() for i in range(0, len(inputs), num_inputs)] | |
| inputs = [inputs[i:i + num_inputs] | |
| for i in range(0, len(inputs), num_inputs)] | |
| # sort before reduce sum | |
| inputs = sorted(inputs, key=lambda i: i[0].get_device()) | |
| results = comm.reduce_add_coalesced(inputs, ctx.target_gpus[0]) | |
| outputs = comm.broadcast_coalesced(results, ctx.target_gpus) | |
| return tuple([t for tensors in outputs for t in tensors]) | |
| def backward(ctx, *inputs): | |
| inputs = [i.data for i in inputs] | |
| inputs = [inputs[i:i + ctx.num_inputs] | |
| for i in range(0, len(inputs), ctx.num_inputs)] | |
| results = comm.reduce_add_coalesced(inputs, ctx.target_gpus[0]) | |
| outputs = comm.broadcast_coalesced(results, ctx.target_gpus) | |
| return (None,) + tuple([Variable(t) for tensors in outputs for t in tensors]) | |
| class Reduce(Function): | |
| def forward(ctx, *inputs): | |
| ctx.target_gpus = [inputs[i].get_device() for i in range(len(inputs))] | |
| inputs = sorted(inputs, key=lambda i: i.get_device()) | |
| return comm.reduce_add(inputs) | |
| def backward(ctx, gradOutput): | |
| return Broadcast.apply(ctx.target_gpus, gradOutput) | |
| class DataParallelModel(DataParallel): | |
| """Implements data parallelism at the module level. | |
| This container parallelizes the application of the given module by | |
| splitting the input across the specified devices by chunking in the | |
| batch dimension. | |
| In the forward pass, the module is replicated on each device, | |
| and each replica handles a portion of the input. During the backwards pass, gradients from each replica are summed into the original module. | |
| Note that the outputs are not gathered, please use compatible | |
| :class:`encoding.parallel.DataParallelCriterion`. | |
| The batch size should be larger than the number of GPUs used. It should | |
| also be an integer multiple of the number of GPUs so that each chunk is | |
| the same size (so that each GPU processes the same number of samples). | |
| Args: | |
| module: module to be parallelized | |
| device_ids: CUDA devices (default: all devices) | |
| Reference: | |
| Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, | |
| Amit Agrawal. βContext Encoding for Semantic Segmentation. | |
| *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018* | |
| Example:: | |
| >>> net = encoding.nn.DataParallelModel(model, device_ids=[0, 1, 2]) | |
| >>> y = net(x) | |
| """ | |
| def gather(self, outputs, output_device): | |
| return outputs | |
| def replicate(self, module, device_ids): | |
| modules = super(DataParallelModel, self).replicate(module, device_ids) | |
| return modules | |
| class DataParallelCriterion(DataParallel): | |
| """ | |
| Calculate loss in multiple-GPUs, which balance the memory usage for | |
| Semantic Segmentation. | |
| The targets are splitted across the specified devices by chunking in | |
| the batch dimension. Please use together with :class:`encoding.parallel.DataParallelModel`. | |
| Reference: | |
| Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, | |
| Amit Agrawal. βContext Encoding for Semantic Segmentation. | |
| *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018* | |
| Example:: | |
| >>> net = encoding.nn.DataParallelModel(model, device_ids=[0, 1, 2]) | |
| >>> criterion = encoding.nn.DataParallelCriterion(criterion, device_ids=[0, 1, 2]) | |
| >>> y = net(x) | |
| >>> loss = criterion(y, target) | |
| """ | |
| def forward(self, inputs, *targets, **kwargs): | |
| # input should be already scatterd | |
| # scattering the targets instead | |
| if not self.device_ids: | |
| return self.module(inputs, *targets, **kwargs) | |
| targets, kwargs = self.scatter(targets, kwargs, self.device_ids) | |
| if len(self.device_ids) == 1: | |
| return self.module(inputs, *targets[0], **kwargs[0]) | |
| replicas = self.replicate(self.module, self.device_ids[:len(inputs)]) | |
| outputs = _criterion_parallel_apply(replicas, inputs, targets, kwargs) | |
| return Reduce.apply(*outputs) / len(outputs) | |
| def _criterion_parallel_apply(modules, inputs, targets, kwargs_tup=None, devices=None): | |
| assert len(modules) == len(inputs) | |
| assert len(targets) == len(inputs) | |
| if kwargs_tup: | |
| assert len(modules) == len(kwargs_tup) | |
| else: | |
| kwargs_tup = ({},) * len(modules) | |
| if devices is not None: | |
| assert len(modules) == len(devices) | |
| else: | |
| devices = [None] * len(modules) | |
| lock = threading.Lock() | |
| results = {} | |
| if torch_ver != "0.3": | |
| grad_enabled = torch.is_grad_enabled() | |
| def _worker(i, module, input, target, kwargs, device=None): | |
| if torch_ver != "0.3": | |
| torch.set_grad_enabled(grad_enabled) | |
| if device is None: | |
| device = get_a_var(input).get_device() | |
| try: | |
| if not isinstance(input, tuple): | |
| input = (input,) | |
| with torch.cuda.device(device): | |
| output = module(*(input + target), **kwargs) | |
| with lock: | |
| results[i] = output | |
| except Exception as e: | |
| with lock: | |
| results[i] = e | |
| if len(modules) > 1: | |
| threads = [threading.Thread(target=_worker, | |
| args=(i, module, input, target, | |
| kwargs, device),) | |
| for i, (module, input, target, kwargs, device) in | |
| enumerate(zip(modules, inputs, targets, kwargs_tup, devices))] | |
| for thread in threads: | |
| thread.start() | |
| for thread in threads: | |
| thread.join() | |
| else: | |
| _worker(0, modules[0], inputs[0], kwargs_tup[0], devices[0]) | |
| outputs = [] | |
| for i in range(len(inputs)): | |
| output = results[i] | |
| if isinstance(output, Exception): | |
| raise output | |
| outputs.append(output) | |
| return outputs | |