Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,654 Bytes
a26f93a b35040f c3ffb57 1452227 c3ffb57 1452227 b35040f 1452227 b35040f 1452227 b35040f 1452227 b35040f 1452227 b35040f 1452227 b35040f 1452227 b35040f 1452227 b35040f ec99653 b35040f 1452227 b35040f ec99653 1452227 ec99653 b35040f 1452227 b35040f ae2987b b35040f ae2987b b35040f ae2987b b35040f e452575 b35040f 1452227 e452575 ae2987b 1452227 b35040f ae2987b b35040f e452575 b35040f e452575 1452227 ae2987b b35040f ae2987b b35040f 1452227 b35040f 1452227 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import spaces
from snac import SNAC
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import snapshot_download
from dotenv import load_dotenv
load_dotenv()
# Check if CUDA is available
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)
model_name = "Vyvo/VyvoTTS-LFM2-Multi-Speaker"
# Download only model config and safetensors
snapshot_download(
repo_id=model_name,
allow_patterns=[
"config.json",
"*.safetensors",
"model.safetensors.index.json",
],
ignore_patterns=[
"optimizer.pt",
"pytorch_model.bin",
"training_args.bin",
"scheduler.pt",
"tokenizer.json",
"tokenizer_config.json",
"special_tokens_map.json",
"vocab.json",
"merges.txt",
"tokenizer.*"
]
)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
print(f"Model loaded to {device}")
# LFM2 Special Tokens Configuration (Sizin doğru değerleriniz)
TOKENIZER_LENGTH = 64400
START_OF_TEXT = 1
END_OF_TEXT = 7
START_OF_SPEECH = TOKENIZER_LENGTH + 1
END_OF_SPEECH = TOKENIZER_LENGTH + 2
START_OF_HUMAN = TOKENIZER_LENGTH + 3
END_OF_HUMAN = TOKENIZER_LENGTH + 4
START_OF_AI = TOKENIZER_LENGTH + 5
END_OF_AI = TOKENIZER_LENGTH + 6
PAD_TOKEN = TOKENIZER_LENGTH + 7
AUDIO_TOKENS_START = TOKENIZER_LENGTH + 10
# Process text prompt (Sizin doğru formatınız)
def process_prompt(prompt, voice, tokenizer, device):
prompt = f"{voice}: {prompt}"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
start_token = torch.tensor([[START_OF_HUMAN]], dtype=torch.int64)
end_tokens = torch.tensor([[END_OF_TEXT, END_OF_HUMAN]], dtype=torch.int64)
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
# No padding needed for single input
attention_mask = torch.ones_like(modified_input_ids)
return modified_input_ids.to(device), attention_mask.to(device)
# Parse output tokens to audio (Sizin doğru formatınız)
def parse_output(generated_ids):
token_to_find = START_OF_SPEECH
token_to_remove = END_OF_SPEECH
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
if len(token_indices[1]) > 0:
last_occurrence_idx = token_indices[1][-1].item()
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
else:
cropped_tensor = generated_ids
processed_rows = []
for row in cropped_tensor:
masked_row = row[row != token_to_remove]
processed_rows.append(masked_row)
code_lists = []
for row in processed_rows:
row_length = row.size(0)
new_length = (row_length // 7) * 7
trimmed_row = row[:new_length]
trimmed_row = [t - AUDIO_TOKENS_START for t in trimmed_row]
code_lists.append(trimmed_row)
return code_lists[0] # Return just the first one for single sample
# Redistribute codes for audio generation (Aynı kalıyor)
def redistribute_codes(code_list, snac_model):
device = next(snac_model.parameters()).device # Get the device of SNAC model
layer_1 = []
layer_2 = []
layer_3 = []
for i in range((len(code_list)+1)//7):
layer_1.append(code_list[7*i])
layer_2.append(code_list[7*i+1]-4096)
layer_3.append(code_list[7*i+2]-(2*4096))
layer_3.append(code_list[7*i+3]-(3*4096))
layer_2.append(code_list[7*i+4]-(4*4096))
layer_3.append(code_list[7*i+5]-(5*4096))
layer_3.append(code_list[7*i+6]-(6*4096))
# Move tensors to the same device as the SNAC model
codes = [
torch.tensor(layer_1, device=device).unsqueeze(0),
torch.tensor(layer_2, device=device).unsqueeze(0),
torch.tensor(layer_3, device=device).unsqueeze(0)
]
audio_hat = snac_model.decode(codes)
return audio_hat.detach().squeeze().cpu().numpy() # Always return CPU numpy array
# Main generation function
@spaces.GPU()
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
if not text.strip():
return None
try:
progress(0.1, f"Processing text with {voice} voice...")
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
progress(0.3, "Generating speech tokens...")
with torch.no_grad():
generated_ids = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
num_return_sequences=1,
eos_token_id=END_OF_SPEECH, # Doğru EOS token
)
progress(0.6, "Processing speech tokens...")
code_list = parse_output(generated_ids)
progress(0.8, "Converting to audio...")
audio_samples = redistribute_codes(code_list, snac_model)
progress(1.0, f"✅ Completed with {voice}!")
return (24000, audio_samples) # Return sample rate and audio
except Exception as e:
print(f"Error generating speech: {e}")
return None
# Examples for the UI - Genshin karakterleri ile
examples = [
["Hey there! I am ready to help you on your adventure in Teyvat.", "Tighnari", 0.6, 0.95, 1.1, 1200],
["The wind brings new adventures and ancient secrets to discover.", "Kaeya", 0.7, 0.95, 1.1, 1200],
["Let me share the wisdom of the elements with you, traveler.", "Nahida", 0.6, 0.9, 1.2, 1200],
["Every journey begins with a single step forward into the unknown.", "Noelle", 0.65, 0.9, 1.1, 1200],
["The stars above guide us through even the darkest of nights.", "Furina", 0.7, 0.95, 1.1, 1200],
["Together we can explore the mysteries of this vast world.", "Lyney", 0.65, 0.9, 1.15, 1200],
["Knowledge is power, but wisdom is knowing how to use it.", "Alhaitham", 0.7, 0.95, 1.1, 1200],
["The beauty of Sumeru never fails to take my breath away.", "Collei", 0.6, 0.95, 1.1, 1200]
]
# Available voices - Genshin karakterleri ve diğerleri
VOICES = [
"Stephen_Fry",
"Tighnari",
"Thoma",
"Shikanoin_Heizou",
"Noelle",
"Ningguang",
"Nilou",
"Neuvillette",
"Navia",
"Nahida",
"Mualani",
"Lyney",
"Lynette",
"Layla",
"Kaveh",
"Kaeya",
"Furina",
"Dehya",
"Cyno",
"Collei",
"Beidou",
"Alhaitham",
"Arataki_Itto",
"Jenny_Voice",
"Optimus_Prime"
]
# Available Emotive Tags
EMOTIVE_TAGS = ["`<laugh>`", "`<chuckle>`", "`<sigh>`", "`<cough>`", "`<sniffle>`", "`<groan>`", "`<yawn>`", "`<gasp>`"]
# Create Gradio interface
with gr.Blocks(title="VyvoTTS Multi-Speaker") as demo:
gr.Markdown(f"""
# 🎮 VyvoTTS Multi-Speaker
VyvoTTS is a text-to-speech model by Vyvo team using LFM2 architecture, trained on multiple diverse open-source datasets.
Since some datasets may contain transcription errors or quality issues, output quality can vary.
Higher quality datasets typically produce better speech synthesis results.
**Available Character Voices:**
🌟 Genshin Impact: Tighnari, Thoma, Heizou, Noelle, Ningguang, Nilou, Neuvillette, Navia, Nahida, Mualani, Lyney, Lynette, Layla, Kaveh, Kaeya, Furina, Dehya, Cyno, Collei, Beidou, Alhaitham, Itto
🎭 Others: Stephen Fry, Jenny Voice, Optimus Prime
## Tips for better prompts:
- Add paralinguistic elements like {", ".join(EMOTIVE_TAGS)} or `uhm` for more human-like speech.
- Longer text prompts generally work better than very short phrases
- Increasing `repetition_penalty` and `temperature` makes the model speak faster.
**Note:** Output quality may vary depending on the source dataset quality for each character voice.
""")
with gr.Row():
with gr.Column(scale=3):
text_input = gr.Textbox(
label="Text to speak",
placeholder="Enter your text here...",
lines=5
)
voice = gr.Dropdown(
choices=VOICES,
value="Tighnari",
label="Character Voice"
)
with gr.Accordion("Advanced Settings", open=False):
temperature = gr.Slider(
minimum=0.1, maximum=1.5, value=0.6, step=0.05,
label="Temperature",
info="Higher values (0.7-1.0) create more expressive but less stable speech"
)
top_p = gr.Slider(
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
label="Top P",
info="Nucleus sampling threshold"
)
repetition_penalty = gr.Slider(
minimum=1.0, maximum=2.0, value=1.1, step=0.05,
label="Repetition Penalty",
info="Higher values discourage repetitive patterns"
)
max_new_tokens = gr.Slider(
minimum=100, maximum=2000, value=1200, step=100,
label="Max Length",
info="Maximum length of generated audio (in tokens)"
)
with gr.Row():
submit_btn = gr.Button("Generate Speech", variant="primary")
clear_btn = gr.Button("Clear")
with gr.Column(scale=2):
audio_output = gr.Audio(label="Generated Speech", type="numpy")
# Set up examples
gr.Examples(
examples=examples,
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
outputs=audio_output,
fn=generate_speech,
cache_examples=True,
)
# Set up event handlers
submit_btn.click(
fn=generate_speech,
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
outputs=audio_output,
show_progress=True
)
clear_btn.click(
fn=lambda: (None, None),
inputs=[],
outputs=[text_input, audio_output]
)
# Launch the app
if __name__ == "__main__":
demo.queue().launch(share=False, ssr_mode=False) |