File size: 10,654 Bytes
a26f93a
b35040f
 
 
 
 
 
 
 
c3ffb57
 
 
 
 
 
 
1452227
c3ffb57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1452227
b35040f
1452227
 
 
 
 
 
 
 
 
 
 
 
 
 
b35040f
 
 
 
1452227
 
b35040f
1452227
b35040f
 
 
 
 
 
1452227
b35040f
1452227
 
b35040f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1452227
b35040f
 
 
 
1452227
b35040f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec99653
b35040f
 
 
 
 
1452227
b35040f
 
 
ec99653
 
 
 
 
 
 
 
 
 
1452227
ec99653
b35040f
 
 
 
 
 
 
1452227
b35040f
 
 
 
 
ae2987b
b35040f
ae2987b
 
 
 
 
 
 
 
b35040f
 
ae2987b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b35040f
e452575
 
 
b35040f
1452227
e452575
ae2987b
1452227
 
 
b35040f
ae2987b
 
 
 
b35040f
e452575
b35040f
e452575
1452227
ae2987b
b35040f
 
 
 
 
 
 
 
 
 
ae2987b
 
b35040f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1452227
 
b35040f
 
 
 
 
 
 
 
 
 
1452227
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import spaces
from snac import SNAC
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import snapshot_download
from dotenv import load_dotenv
load_dotenv()

# Check if CUDA is available
device = "cuda" if torch.cuda.is_available() else "cpu"

print("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)

model_name = "Vyvo/VyvoTTS-LFM2-Multi-Speaker"

# Download only model config and safetensors
snapshot_download(
    repo_id=model_name,
    allow_patterns=[
        "config.json",
        "*.safetensors",
        "model.safetensors.index.json",
    ],
    ignore_patterns=[
        "optimizer.pt",
        "pytorch_model.bin",
        "training_args.bin",
        "scheduler.pt",
        "tokenizer.json",
        "tokenizer_config.json",
        "special_tokens_map.json",
        "vocab.json",
        "merges.txt",
        "tokenizer.*"
    ]
)

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
print(f"Model loaded to {device}")

# LFM2 Special Tokens Configuration (Sizin doğru değerleriniz)
TOKENIZER_LENGTH = 64400
START_OF_TEXT = 1
END_OF_TEXT = 7
START_OF_SPEECH = TOKENIZER_LENGTH + 1
END_OF_SPEECH = TOKENIZER_LENGTH + 2
START_OF_HUMAN = TOKENIZER_LENGTH + 3
END_OF_HUMAN = TOKENIZER_LENGTH + 4
START_OF_AI = TOKENIZER_LENGTH + 5
END_OF_AI = TOKENIZER_LENGTH + 6
PAD_TOKEN = TOKENIZER_LENGTH + 7
AUDIO_TOKENS_START = TOKENIZER_LENGTH + 10

# Process text prompt (Sizin doğru formatınız)
def process_prompt(prompt, voice, tokenizer, device):
    prompt = f"{voice}: {prompt}"
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids
    
    start_token = torch.tensor([[START_OF_HUMAN]], dtype=torch.int64)
    end_tokens = torch.tensor([[END_OF_TEXT, END_OF_HUMAN]], dtype=torch.int64)
    
    modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
    
    # No padding needed for single input
    attention_mask = torch.ones_like(modified_input_ids)
    
    return modified_input_ids.to(device), attention_mask.to(device)

# Parse output tokens to audio (Sizin doğru formatınız)
def parse_output(generated_ids):
    token_to_find = START_OF_SPEECH
    token_to_remove = END_OF_SPEECH
    
    token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)

    if len(token_indices[1]) > 0:
        last_occurrence_idx = token_indices[1][-1].item()
        cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
    else:
        cropped_tensor = generated_ids

    processed_rows = []
    for row in cropped_tensor:
        masked_row = row[row != token_to_remove]
        processed_rows.append(masked_row)

    code_lists = []
    for row in processed_rows:
        row_length = row.size(0)
        new_length = (row_length // 7) * 7
        trimmed_row = row[:new_length]
        trimmed_row = [t - AUDIO_TOKENS_START for t in trimmed_row]
        code_lists.append(trimmed_row)
        
    return code_lists[0]  # Return just the first one for single sample

# Redistribute codes for audio generation (Aynı kalıyor)
def redistribute_codes(code_list, snac_model):
    device = next(snac_model.parameters()).device  # Get the device of SNAC model
    
    layer_1 = []
    layer_2 = []
    layer_3 = []
    for i in range((len(code_list)+1)//7):
        layer_1.append(code_list[7*i])
        layer_2.append(code_list[7*i+1]-4096)
        layer_3.append(code_list[7*i+2]-(2*4096))
        layer_3.append(code_list[7*i+3]-(3*4096))
        layer_2.append(code_list[7*i+4]-(4*4096))
        layer_3.append(code_list[7*i+5]-(5*4096))
        layer_3.append(code_list[7*i+6]-(6*4096))
        
    # Move tensors to the same device as the SNAC model
    codes = [
        torch.tensor(layer_1, device=device).unsqueeze(0),
        torch.tensor(layer_2, device=device).unsqueeze(0),
        torch.tensor(layer_3, device=device).unsqueeze(0)
    ]
    
    audio_hat = snac_model.decode(codes)
    return audio_hat.detach().squeeze().cpu().numpy()  # Always return CPU numpy array

# Main generation function
@spaces.GPU()
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
    if not text.strip():
        return None
    
    try:
        progress(0.1, f"Processing text with {voice} voice...")
        input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
        
        progress(0.3, "Generating speech tokens...")
        with torch.no_grad():
            generated_ids = model.generate(
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_new_tokens=max_new_tokens,
                do_sample=True,
                temperature=temperature,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                num_return_sequences=1,
                eos_token_id=END_OF_SPEECH,  # Doğru EOS token
            )
        
        progress(0.6, "Processing speech tokens...")
        code_list = parse_output(generated_ids)
        
        progress(0.8, "Converting to audio...")
        audio_samples = redistribute_codes(code_list, snac_model)
        
        progress(1.0, f"✅ Completed with {voice}!")
        return (24000, audio_samples)  # Return sample rate and audio
    except Exception as e:
        print(f"Error generating speech: {e}")
        return None

# Examples for the UI - Genshin karakterleri ile
examples = [
    ["Hey there! I am ready to help you on your adventure in Teyvat.", "Tighnari", 0.6, 0.95, 1.1, 1200],
    ["The wind brings new adventures and ancient secrets to discover.", "Kaeya", 0.7, 0.95, 1.1, 1200],
    ["Let me share the wisdom of the elements with you, traveler.", "Nahida", 0.6, 0.9, 1.2, 1200],
    ["Every journey begins with a single step forward into the unknown.", "Noelle", 0.65, 0.9, 1.1, 1200],
    ["The stars above guide us through even the darkest of nights.", "Furina", 0.7, 0.95, 1.1, 1200],
    ["Together we can explore the mysteries of this vast world.", "Lyney", 0.65, 0.9, 1.15, 1200],
    ["Knowledge is power, but wisdom is knowing how to use it.", "Alhaitham", 0.7, 0.95, 1.1, 1200],
    ["The beauty of Sumeru never fails to take my breath away.", "Collei", 0.6, 0.95, 1.1, 1200]
]

# Available voices - Genshin karakterleri ve diğerleri
VOICES = [
    "Stephen_Fry",
    "Tighnari", 
    "Thoma",
    "Shikanoin_Heizou",
    "Noelle",
    "Ningguang", 
    "Nilou",
    "Neuvillette",
    "Navia",
    "Nahida",
    "Mualani",
    "Lyney",
    "Lynette", 
    "Layla",
    "Kaveh",
    "Kaeya",
    "Furina",
    "Dehya", 
    "Cyno",
    "Collei",
    "Beidou",
    "Alhaitham",
    "Arataki_Itto",
    "Jenny_Voice",
    "Optimus_Prime"
]

# Available Emotive Tags
EMOTIVE_TAGS = ["`<laugh>`", "`<chuckle>`", "`<sigh>`", "`<cough>`", "`<sniffle>`", "`<groan>`", "`<yawn>`", "`<gasp>`"]

# Create Gradio interface
with gr.Blocks(title="VyvoTTS Multi-Speaker") as demo:
    gr.Markdown(f"""
    # 🎮 VyvoTTS Multi-Speaker
    VyvoTTS is a text-to-speech model by Vyvo team using LFM2 architecture, trained on multiple diverse open-source datasets. 
    Since some datasets may contain transcription errors or quality issues, output quality can vary. 
    Higher quality datasets typically produce better speech synthesis results.
    
    **Available Character Voices:**
    🌟 Genshin Impact: Tighnari, Thoma, Heizou, Noelle, Ningguang, Nilou, Neuvillette, Navia, Nahida, Mualani, Lyney, Lynette, Layla, Kaveh, Kaeya, Furina, Dehya, Cyno, Collei, Beidou, Alhaitham, Itto
    🎭 Others: Stephen Fry, Jenny Voice, Optimus Prime
    
    ## Tips for better prompts:
    - Add paralinguistic elements like {", ".join(EMOTIVE_TAGS)} or `uhm` for more human-like speech.
    - Longer text prompts generally work better than very short phrases
    - Increasing `repetition_penalty` and `temperature` makes the model speak faster.
    
    **Note:** Output quality may vary depending on the source dataset quality for each character voice.
    """)    
    with gr.Row():
        with gr.Column(scale=3):
            text_input = gr.Textbox(
                label="Text to speak", 
                placeholder="Enter your text here...",
                lines=5
            )
            voice = gr.Dropdown(
                choices=VOICES, 
                value="Tighnari", 
                label="Character Voice"
            )
            
            with gr.Accordion("Advanced Settings", open=False):
                temperature = gr.Slider(
                    minimum=0.1, maximum=1.5, value=0.6, step=0.05,
                    label="Temperature", 
                    info="Higher values (0.7-1.0) create more expressive but less stable speech"
                )
                top_p = gr.Slider(
                    minimum=0.1, maximum=1.0, value=0.95, step=0.05,
                    label="Top P", 
                    info="Nucleus sampling threshold"
                )
                repetition_penalty = gr.Slider(
                    minimum=1.0, maximum=2.0, value=1.1, step=0.05,
                    label="Repetition Penalty", 
                    info="Higher values discourage repetitive patterns"
                )
                max_new_tokens = gr.Slider(
                    minimum=100, maximum=2000, value=1200, step=100,
                    label="Max Length", 
                    info="Maximum length of generated audio (in tokens)"
                )
            
            with gr.Row():
                submit_btn = gr.Button("Generate Speech", variant="primary")
                clear_btn = gr.Button("Clear")
                
        with gr.Column(scale=2):
            audio_output = gr.Audio(label="Generated Speech", type="numpy")
            
    # Set up examples
    gr.Examples(
        examples=examples,
        inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
        outputs=audio_output,
        fn=generate_speech,
        cache_examples=True,
    )
    
    # Set up event handlers
    submit_btn.click(
        fn=generate_speech,
        inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
        outputs=audio_output,
        show_progress=True
    )
    
    clear_btn.click(
        fn=lambda: (None, None),
        inputs=[],
        outputs=[text_input, audio_output]
    )

# Launch the app
if __name__ == "__main__":
    demo.queue().launch(share=False, ssr_mode=False)