Spaces:
Paused
Paused
Upload 27 files
Browse files- diffusion_webui/__init__.py +1 -1
- diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_canny.py +214 -0
- diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_depth.py +211 -0
- diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_hed.py +205 -0
- diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_mlsd.py +205 -0
- diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_pose.py +207 -0
- diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_scribble.py +210 -0
- diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_seg.py +390 -0
- diffusion_webui/diffusion_models/controlnet/controlnet_seg.py +1 -1
- diffusion_webui/helpers.py +20 -2
- diffusion_webui/utils/model_list.py +9 -1
diffusion_webui/__init__.py
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
__version__ = "1.
|
|
|
|
| 1 |
+
__version__ = "1.6.0"
|
diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_canny.py
ADDED
|
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
from diffusion_webui.utils.model_list import (
|
| 9 |
+
controlnet_canny_model_list,
|
| 10 |
+
stable_model_list,
|
| 11 |
+
)
|
| 12 |
+
from diffusion_webui.utils.scheduler_list import (
|
| 13 |
+
SCHEDULER_LIST,
|
| 14 |
+
get_scheduler_list,
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
# https://github.com/mikonvergence/ControlNetInpaint
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class StableDiffusionControlNetInpaintCannyGenerator:
|
| 21 |
+
def __init__(self):
|
| 22 |
+
self.pipe = None
|
| 23 |
+
|
| 24 |
+
def load_model(self, stable_model_path, controlnet_model_path, scheduler):
|
| 25 |
+
if self.pipe is None:
|
| 26 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 27 |
+
controlnet_model_path, torch_dtype=torch.float16
|
| 28 |
+
)
|
| 29 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 30 |
+
pretrained_model_name_or_path=stable_model_path,
|
| 31 |
+
controlnet=controlnet,
|
| 32 |
+
safety_checker=None,
|
| 33 |
+
torch_dtype=torch.float16,
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
| 37 |
+
self.pipe.to("cuda")
|
| 38 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
| 39 |
+
|
| 40 |
+
return self.pipe
|
| 41 |
+
|
| 42 |
+
def controlnet_canny_inpaint(
|
| 43 |
+
self,
|
| 44 |
+
image_path: str,
|
| 45 |
+
):
|
| 46 |
+
image = image_path["image"].convert("RGB").resize((512, 512))
|
| 47 |
+
image = np.array(image)
|
| 48 |
+
|
| 49 |
+
image = cv2.Canny(image, 100, 200)
|
| 50 |
+
image = image[:, :, None]
|
| 51 |
+
image = np.concatenate([image, image, image], axis=2)
|
| 52 |
+
image = Image.fromarray(image)
|
| 53 |
+
|
| 54 |
+
return image
|
| 55 |
+
|
| 56 |
+
def generate_image(
|
| 57 |
+
self,
|
| 58 |
+
image_path: str,
|
| 59 |
+
stable_model_path: str,
|
| 60 |
+
controlnet_model_path: str,
|
| 61 |
+
prompt: str,
|
| 62 |
+
negative_prompt: str,
|
| 63 |
+
num_images_per_prompt: int,
|
| 64 |
+
guidance_scale: int,
|
| 65 |
+
num_inference_step: int,
|
| 66 |
+
controlnet_conditioning_scale: int,
|
| 67 |
+
scheduler: str,
|
| 68 |
+
seed_generator: int,
|
| 69 |
+
):
|
| 70 |
+
|
| 71 |
+
image = self.controlnet_canny_inpaint(image_path=image_path)
|
| 72 |
+
|
| 73 |
+
pipe = self.load_model(
|
| 74 |
+
stable_model_path=stable_model_path,
|
| 75 |
+
controlnet_model_path=controlnet_model_path,
|
| 76 |
+
scheduler=scheduler,
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
if seed_generator == 0:
|
| 80 |
+
random_seed = torch.randint(0, 1000000, (1,))
|
| 81 |
+
generator = torch.manual_seed(random_seed)
|
| 82 |
+
else:
|
| 83 |
+
generator = torch.manual_seed(seed_generator)
|
| 84 |
+
|
| 85 |
+
output = pipe(
|
| 86 |
+
prompt=prompt,
|
| 87 |
+
image=image,
|
| 88 |
+
negative_prompt=negative_prompt,
|
| 89 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 90 |
+
num_inference_steps=num_inference_step,
|
| 91 |
+
guidance_scale=guidance_scale,
|
| 92 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 93 |
+
generator=generator,
|
| 94 |
+
).images
|
| 95 |
+
|
| 96 |
+
return output
|
| 97 |
+
|
| 98 |
+
def app():
|
| 99 |
+
with gr.Blocks():
|
| 100 |
+
with gr.Row():
|
| 101 |
+
with gr.Column():
|
| 102 |
+
controlnet_canny_inpaint_image_file = gr.Image(
|
| 103 |
+
source="upload",
|
| 104 |
+
tool="sketch",
|
| 105 |
+
elem_id="image_upload",
|
| 106 |
+
type="pil",
|
| 107 |
+
label="Upload",
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
controlnet_canny_inpaint_prompt = gr.Textbox(
|
| 111 |
+
lines=1, placeholder="Prompt", show_label=False
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
controlnet_canny_inpaint_negative_prompt = gr.Textbox(
|
| 115 |
+
lines=1,
|
| 116 |
+
show_label=False,
|
| 117 |
+
placeholder="Negative Prompt",
|
| 118 |
+
)
|
| 119 |
+
with gr.Row():
|
| 120 |
+
with gr.Column():
|
| 121 |
+
controlnet_canny_inpaint_stable_model_id = (
|
| 122 |
+
gr.Dropdown(
|
| 123 |
+
choices=stable_model_list,
|
| 124 |
+
value=stable_model_list[0],
|
| 125 |
+
label="Stable Model Id",
|
| 126 |
+
)
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
controlnet_canny_inpaint_guidance_scale = gr.Slider(
|
| 130 |
+
minimum=0.1,
|
| 131 |
+
maximum=15,
|
| 132 |
+
step=0.1,
|
| 133 |
+
value=7.5,
|
| 134 |
+
label="Guidance Scale",
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
controlnet_canny_inpaint_num_inference_step = (
|
| 138 |
+
gr.Slider(
|
| 139 |
+
minimum=1,
|
| 140 |
+
maximum=100,
|
| 141 |
+
step=1,
|
| 142 |
+
value=50,
|
| 143 |
+
label="Num Inference Step",
|
| 144 |
+
)
|
| 145 |
+
)
|
| 146 |
+
controlnet_canny_inpaint_num_images_per_prompt = (
|
| 147 |
+
gr.Slider(
|
| 148 |
+
minimum=1,
|
| 149 |
+
maximum=10,
|
| 150 |
+
step=1,
|
| 151 |
+
value=1,
|
| 152 |
+
label="Number Of Images",
|
| 153 |
+
)
|
| 154 |
+
)
|
| 155 |
+
with gr.Row():
|
| 156 |
+
with gr.Column():
|
| 157 |
+
controlnet_canny_inpaint_model_id = gr.Dropdown(
|
| 158 |
+
choices=controlnet_canny_model_list,
|
| 159 |
+
value=controlnet_canny_model_list[0],
|
| 160 |
+
label="Controlnet Model Id",
|
| 161 |
+
)
|
| 162 |
+
controlnet_canny_inpaint_scheduler = (
|
| 163 |
+
gr.Dropdown(
|
| 164 |
+
choices=SCHEDULER_LIST,
|
| 165 |
+
value=SCHEDULER_LIST[0],
|
| 166 |
+
label="Scheduler",
|
| 167 |
+
)
|
| 168 |
+
)
|
| 169 |
+
controlnet_canny_inpaint_controlnet_conditioning_scale = gr.Slider(
|
| 170 |
+
minimum=0.1,
|
| 171 |
+
maximum=1.0,
|
| 172 |
+
step=0.1,
|
| 173 |
+
value=0.5,
|
| 174 |
+
label="Controlnet Conditioning Scale",
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
controlnet_canny_inpaint_seed_generator = (
|
| 178 |
+
gr.Slider(
|
| 179 |
+
minimum=0,
|
| 180 |
+
maximum=1000000,
|
| 181 |
+
step=1,
|
| 182 |
+
value=0,
|
| 183 |
+
label="Seed Generator",
|
| 184 |
+
)
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
controlnet_canny_inpaint_predict = gr.Button(
|
| 188 |
+
value="Generator"
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
with gr.Column():
|
| 192 |
+
output_image = gr.Gallery(
|
| 193 |
+
label="Generated images",
|
| 194 |
+
show_label=False,
|
| 195 |
+
elem_id="gallery",
|
| 196 |
+
).style(grid=(1, 2))
|
| 197 |
+
|
| 198 |
+
controlnet_canny_inpaint_predict.click(
|
| 199 |
+
fn=StableDiffusionControlNetInpaintCannyGenerator().generate_image,
|
| 200 |
+
inputs=[
|
| 201 |
+
controlnet_canny_inpaint_image_file,
|
| 202 |
+
controlnet_canny_inpaint_stable_model_id,
|
| 203 |
+
controlnet_canny_inpaint_model_id,
|
| 204 |
+
controlnet_canny_inpaint_prompt,
|
| 205 |
+
controlnet_canny_inpaint_negative_prompt,
|
| 206 |
+
controlnet_canny_inpaint_num_images_per_prompt,
|
| 207 |
+
controlnet_canny_inpaint_guidance_scale,
|
| 208 |
+
controlnet_canny_inpaint_num_inference_step,
|
| 209 |
+
controlnet_canny_inpaint_controlnet_conditioning_scale,
|
| 210 |
+
controlnet_canny_inpaint_scheduler,
|
| 211 |
+
controlnet_canny_inpaint_seed_generator,
|
| 212 |
+
],
|
| 213 |
+
outputs=[output_image],
|
| 214 |
+
)
|
diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_depth.py
ADDED
|
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
|
| 8 |
+
from diffusion_webui.utils.model_list import (
|
| 9 |
+
controlnet_depth_model_list,
|
| 10 |
+
stable_model_list,
|
| 11 |
+
)
|
| 12 |
+
from diffusion_webui.utils.scheduler_list import (
|
| 13 |
+
SCHEDULER_LIST,
|
| 14 |
+
get_scheduler_list,
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
# https://github.com/mikonvergence/ControlNetInpaint
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class StableDiffusionControlInpaintNetDepthGenerator:
|
| 21 |
+
def __init__(self):
|
| 22 |
+
self.pipe = None
|
| 23 |
+
|
| 24 |
+
def load_model(self, stable_model_path, controlnet_model_path, scheduler):
|
| 25 |
+
if self.pipe is None:
|
| 26 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 27 |
+
controlnet_model_path, torch_dtype=torch.float16
|
| 28 |
+
)
|
| 29 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 30 |
+
pretrained_model_name_or_path=stable_model_path,
|
| 31 |
+
controlnet=controlnet,
|
| 32 |
+
safety_checker=None,
|
| 33 |
+
torch_dtype=torch.float16,
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
| 37 |
+
self.pipe.to("cuda")
|
| 38 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
| 39 |
+
|
| 40 |
+
return self.pipe
|
| 41 |
+
|
| 42 |
+
def controlnet_inpaint_depth(self, image_path: str):
|
| 43 |
+
depth_estimator = pipeline("depth-estimation")
|
| 44 |
+
image = image_path["image"].convert("RGB").resize((512, 512))
|
| 45 |
+
image = depth_estimator(image)["depth"]
|
| 46 |
+
image = np.array(image)
|
| 47 |
+
image = image[:, :, None]
|
| 48 |
+
image = np.concatenate([image, image, image], axis=2)
|
| 49 |
+
image = Image.fromarray(image)
|
| 50 |
+
|
| 51 |
+
return image
|
| 52 |
+
|
| 53 |
+
def generate_image(
|
| 54 |
+
self,
|
| 55 |
+
image_path: str,
|
| 56 |
+
stable_model_path: str,
|
| 57 |
+
controlnet_model_path: str,
|
| 58 |
+
prompt: str,
|
| 59 |
+
negative_prompt: str,
|
| 60 |
+
num_images_per_prompt: int,
|
| 61 |
+
guidance_scale: int,
|
| 62 |
+
num_inference_step: int,
|
| 63 |
+
controlnet_conditioning_scale: int,
|
| 64 |
+
scheduler: str,
|
| 65 |
+
seed_generator: int,
|
| 66 |
+
):
|
| 67 |
+
|
| 68 |
+
image = self.controlnet_inpaint_depth(image_path=image_path)
|
| 69 |
+
|
| 70 |
+
pipe = self.load_model(
|
| 71 |
+
stable_model_path=stable_model_path,
|
| 72 |
+
controlnet_model_path=controlnet_model_path,
|
| 73 |
+
scheduler=scheduler,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
if seed_generator == 0:
|
| 77 |
+
random_seed = torch.randint(0, 1000000, (1,))
|
| 78 |
+
generator = torch.manual_seed(random_seed)
|
| 79 |
+
else:
|
| 80 |
+
generator = torch.manual_seed(seed_generator)
|
| 81 |
+
|
| 82 |
+
output = pipe(
|
| 83 |
+
prompt=prompt,
|
| 84 |
+
image=image,
|
| 85 |
+
negative_prompt=negative_prompt,
|
| 86 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 87 |
+
num_inference_steps=num_inference_step,
|
| 88 |
+
guidance_scale=guidance_scale,
|
| 89 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 90 |
+
generator=generator,
|
| 91 |
+
).images
|
| 92 |
+
|
| 93 |
+
return output
|
| 94 |
+
|
| 95 |
+
def app():
|
| 96 |
+
with gr.Blocks():
|
| 97 |
+
with gr.Row():
|
| 98 |
+
with gr.Column():
|
| 99 |
+
controlnet_depth_inpaint_image_file = gr.Image(
|
| 100 |
+
source="upload",
|
| 101 |
+
tool="sketch",
|
| 102 |
+
elem_id="image_upload",
|
| 103 |
+
type="pil",
|
| 104 |
+
label="Upload",
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
controlnet_depth_inpaint_prompt = gr.Textbox(
|
| 108 |
+
lines=1, placeholder="Prompt", show_label=False
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
controlnet_depth_inpaint_negative_prompt = gr.Textbox(
|
| 112 |
+
lines=1,
|
| 113 |
+
show_label=False,
|
| 114 |
+
placeholder="Negative Prompt",
|
| 115 |
+
)
|
| 116 |
+
with gr.Row():
|
| 117 |
+
with gr.Column():
|
| 118 |
+
controlnet_depth_inpaint_stable_model_id = (
|
| 119 |
+
gr.Dropdown(
|
| 120 |
+
choices=stable_model_list,
|
| 121 |
+
value=stable_model_list[0],
|
| 122 |
+
label="Stable Model Id",
|
| 123 |
+
)
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
controlnet_depth_inpaint_guidance_scale = gr.Slider(
|
| 127 |
+
minimum=0.1,
|
| 128 |
+
maximum=15,
|
| 129 |
+
step=0.1,
|
| 130 |
+
value=7.5,
|
| 131 |
+
label="Guidance Scale",
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
controlnet_depth_inpaint_num_inference_step = (
|
| 135 |
+
gr.Slider(
|
| 136 |
+
minimum=1,
|
| 137 |
+
maximum=100,
|
| 138 |
+
step=1,
|
| 139 |
+
value=50,
|
| 140 |
+
label="Num Inference Step",
|
| 141 |
+
)
|
| 142 |
+
)
|
| 143 |
+
controlnet_depth_inpaint_num_images_per_prompt = (
|
| 144 |
+
gr.Slider(
|
| 145 |
+
minimum=1,
|
| 146 |
+
maximum=10,
|
| 147 |
+
step=1,
|
| 148 |
+
value=1,
|
| 149 |
+
label="Number Of Images",
|
| 150 |
+
)
|
| 151 |
+
)
|
| 152 |
+
with gr.Row():
|
| 153 |
+
with gr.Column():
|
| 154 |
+
controlnet_depth_inpaint_model_id = gr.Dropdown(
|
| 155 |
+
choices=controlnet_depth_model_list,
|
| 156 |
+
value=controlnet_depth_model_list[0],
|
| 157 |
+
label="Controlnet Model Id",
|
| 158 |
+
)
|
| 159 |
+
controlnet_depth_inpaint_scheduler = (
|
| 160 |
+
gr.Dropdown(
|
| 161 |
+
choices=SCHEDULER_LIST,
|
| 162 |
+
value=SCHEDULER_LIST[0],
|
| 163 |
+
label="Scheduler",
|
| 164 |
+
)
|
| 165 |
+
)
|
| 166 |
+
controlnet_depth_inpaint_controlnet_conditioning_scale = gr.Slider(
|
| 167 |
+
minimum=0.1,
|
| 168 |
+
maximum=1.0,
|
| 169 |
+
step=0.1,
|
| 170 |
+
value=0.5,
|
| 171 |
+
label="Controlnet Conditioning Scale",
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
controlnet_depth_inpaint_seed_generator = (
|
| 175 |
+
gr.Slider(
|
| 176 |
+
minimum=0,
|
| 177 |
+
maximum=1000000,
|
| 178 |
+
step=1,
|
| 179 |
+
value=0,
|
| 180 |
+
label="Seed Generator",
|
| 181 |
+
)
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
controlnet_depth_inpaint_predict = gr.Button(
|
| 185 |
+
value="Generator"
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
with gr.Column():
|
| 189 |
+
output_image = gr.Gallery(
|
| 190 |
+
label="Generated images",
|
| 191 |
+
show_label=False,
|
| 192 |
+
elem_id="gallery",
|
| 193 |
+
).style(grid=(1, 2))
|
| 194 |
+
|
| 195 |
+
controlnet_depth_inpaint_predict.click(
|
| 196 |
+
fn=StableDiffusionControlInpaintNetDepthGenerator().generate_image,
|
| 197 |
+
inputs=[
|
| 198 |
+
controlnet_depth_inpaint_image_file,
|
| 199 |
+
controlnet_depth_inpaint_stable_model_id,
|
| 200 |
+
controlnet_depth_inpaint_model_id,
|
| 201 |
+
controlnet_depth_inpaint_prompt,
|
| 202 |
+
controlnet_depth_inpaint_negative_prompt,
|
| 203 |
+
controlnet_depth_inpaint_num_images_per_prompt,
|
| 204 |
+
controlnet_depth_inpaint_guidance_scale,
|
| 205 |
+
controlnet_depth_inpaint_num_inference_step,
|
| 206 |
+
controlnet_depth_inpaint_controlnet_conditioning_scale,
|
| 207 |
+
controlnet_depth_inpaint_scheduler,
|
| 208 |
+
controlnet_depth_inpaint_seed_generator,
|
| 209 |
+
],
|
| 210 |
+
outputs=[output_image],
|
| 211 |
+
)
|
diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_hed.py
ADDED
|
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from controlnet_aux import HEDdetector
|
| 5 |
+
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
| 6 |
+
|
| 7 |
+
from diffusion_webui.utils.model_list import (
|
| 8 |
+
controlnet_hed_model_list,
|
| 9 |
+
stable_model_list,
|
| 10 |
+
)
|
| 11 |
+
from diffusion_webui.utils.scheduler_list import (
|
| 12 |
+
SCHEDULER_LIST,
|
| 13 |
+
get_scheduler_list,
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
# https://github.com/mikonvergence/ControlNetInpaint
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class StableDiffusionControlNetInpaintHedGenerator:
|
| 20 |
+
def __init__(self):
|
| 21 |
+
self.pipe = None
|
| 22 |
+
|
| 23 |
+
def load_model(self, stable_model_path, controlnet_model_path, scheduler):
|
| 24 |
+
if self.pipe is None:
|
| 25 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 26 |
+
controlnet_model_path, torch_dtype=torch.float16
|
| 27 |
+
)
|
| 28 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 29 |
+
pretrained_model_name_or_path=stable_model_path,
|
| 30 |
+
controlnet=controlnet,
|
| 31 |
+
safety_checker=None,
|
| 32 |
+
torch_dtype=torch.float16,
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
| 36 |
+
self.pipe.to("cuda")
|
| 37 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
| 38 |
+
|
| 39 |
+
return self.pipe
|
| 40 |
+
|
| 41 |
+
def controlnet_inpaint_hed(self, image_path: str):
|
| 42 |
+
hed = HEDdetector.from_pretrained("lllyasviel/ControlNet")
|
| 43 |
+
image = image_path["image"].convert("RGB").resize((512, 512))
|
| 44 |
+
image = np.array(image)
|
| 45 |
+
image = hed(image)
|
| 46 |
+
|
| 47 |
+
return image
|
| 48 |
+
|
| 49 |
+
def generate_image(
|
| 50 |
+
self,
|
| 51 |
+
image_path: str,
|
| 52 |
+
stable_model_path: str,
|
| 53 |
+
controlnet_model_path: str,
|
| 54 |
+
prompt: str,
|
| 55 |
+
negative_prompt: str,
|
| 56 |
+
num_images_per_prompt: int,
|
| 57 |
+
guidance_scale: int,
|
| 58 |
+
num_inference_step: int,
|
| 59 |
+
controlnet_conditioning_scale: int,
|
| 60 |
+
scheduler: str,
|
| 61 |
+
seed_generator: int,
|
| 62 |
+
):
|
| 63 |
+
|
| 64 |
+
image = self.controlnet_inpaint_hed(image_path=image_path)
|
| 65 |
+
|
| 66 |
+
pipe = self.load_model(
|
| 67 |
+
stable_model_path=stable_model_path,
|
| 68 |
+
controlnet_model_path=controlnet_model_path,
|
| 69 |
+
scheduler=scheduler,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
if seed_generator == 0:
|
| 73 |
+
random_seed = torch.randint(0, 1000000, (1,))
|
| 74 |
+
generator = torch.manual_seed(random_seed)
|
| 75 |
+
else:
|
| 76 |
+
generator = torch.manual_seed(seed_generator)
|
| 77 |
+
|
| 78 |
+
output = pipe(
|
| 79 |
+
prompt=prompt,
|
| 80 |
+
image=image,
|
| 81 |
+
negative_prompt=negative_prompt,
|
| 82 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 83 |
+
num_inference_steps=num_inference_step,
|
| 84 |
+
guidance_scale=guidance_scale,
|
| 85 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 86 |
+
generator=generator,
|
| 87 |
+
).images
|
| 88 |
+
|
| 89 |
+
return output
|
| 90 |
+
|
| 91 |
+
def app():
|
| 92 |
+
with gr.Blocks():
|
| 93 |
+
with gr.Row():
|
| 94 |
+
with gr.Column():
|
| 95 |
+
controlnet_hed_inpaint_image_file = gr.Image(
|
| 96 |
+
source="upload",
|
| 97 |
+
tool="sketch",
|
| 98 |
+
elem_id="image_upload",
|
| 99 |
+
type="pil",
|
| 100 |
+
label="Upload",
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
controlnet_hed_inpaint_prompt = gr.Textbox(
|
| 104 |
+
lines=1, placeholder="Prompt", show_label=False
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
controlnet_hed_inpaint_negative_prompt = gr.Textbox(
|
| 108 |
+
lines=1,
|
| 109 |
+
show_label=False,
|
| 110 |
+
placeholder="Negative Prompt",
|
| 111 |
+
)
|
| 112 |
+
with gr.Row():
|
| 113 |
+
with gr.Column():
|
| 114 |
+
controlnet_hed_inpaint_stable_model_id = (
|
| 115 |
+
gr.Dropdown(
|
| 116 |
+
choices=stable_model_list,
|
| 117 |
+
value=stable_model_list[0],
|
| 118 |
+
label="Stable Model Id",
|
| 119 |
+
)
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
controlnet_hed_inpaint_guidance_scale = gr.Slider(
|
| 123 |
+
minimum=0.1,
|
| 124 |
+
maximum=15,
|
| 125 |
+
step=0.1,
|
| 126 |
+
value=7.5,
|
| 127 |
+
label="Guidance Scale",
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
controlnet_hed_inpaint_num_inference_step = (
|
| 131 |
+
gr.Slider(
|
| 132 |
+
minimum=1,
|
| 133 |
+
maximum=100,
|
| 134 |
+
step=1,
|
| 135 |
+
value=50,
|
| 136 |
+
label="Num Inference Step",
|
| 137 |
+
)
|
| 138 |
+
)
|
| 139 |
+
controlnet_hed_inpaint_num_images_per_prompt = (
|
| 140 |
+
gr.Slider(
|
| 141 |
+
minimum=1,
|
| 142 |
+
maximum=10,
|
| 143 |
+
step=1,
|
| 144 |
+
value=1,
|
| 145 |
+
label="Number Of Images",
|
| 146 |
+
)
|
| 147 |
+
)
|
| 148 |
+
with gr.Row():
|
| 149 |
+
with gr.Column():
|
| 150 |
+
controlnet_hed_inpaint_model_id = gr.Dropdown(
|
| 151 |
+
choices=controlnet_hed_model_list,
|
| 152 |
+
value=controlnet_hed_model_list[0],
|
| 153 |
+
label="Controlnet Model Id",
|
| 154 |
+
)
|
| 155 |
+
controlnet_hed_inpaint_scheduler = gr.Dropdown(
|
| 156 |
+
choices=SCHEDULER_LIST,
|
| 157 |
+
value=SCHEDULER_LIST[0],
|
| 158 |
+
label="Scheduler",
|
| 159 |
+
)
|
| 160 |
+
controlnet_hed_inpaint_controlnet_conditioning_scale = gr.Slider(
|
| 161 |
+
minimum=0.1,
|
| 162 |
+
maximum=1.0,
|
| 163 |
+
step=0.1,
|
| 164 |
+
value=0.5,
|
| 165 |
+
label="Controlnet Conditioning Scale",
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
controlnet_hed_inpaint_seed_generator = (
|
| 169 |
+
gr.Slider(
|
| 170 |
+
minimum=0,
|
| 171 |
+
maximum=1000000,
|
| 172 |
+
step=1,
|
| 173 |
+
value=0,
|
| 174 |
+
label="Seed Generator",
|
| 175 |
+
)
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
controlnet_hed_inpaint_predict = gr.Button(
|
| 179 |
+
value="Generator"
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
with gr.Column():
|
| 183 |
+
output_image = gr.Gallery(
|
| 184 |
+
label="Generated images",
|
| 185 |
+
show_label=False,
|
| 186 |
+
elem_id="gallery",
|
| 187 |
+
).style(grid=(1, 2))
|
| 188 |
+
|
| 189 |
+
controlnet_hed_inpaint_predict.click(
|
| 190 |
+
fn=StableDiffusionControlNetInpaintHedGenerator().generate_image,
|
| 191 |
+
inputs=[
|
| 192 |
+
controlnet_hed_inpaint_image_file,
|
| 193 |
+
controlnet_hed_inpaint_stable_model_id,
|
| 194 |
+
controlnet_hed_inpaint_model_id,
|
| 195 |
+
controlnet_hed_inpaint_prompt,
|
| 196 |
+
controlnet_hed_inpaint_negative_prompt,
|
| 197 |
+
controlnet_hed_inpaint_num_images_per_prompt,
|
| 198 |
+
controlnet_hed_inpaint_guidance_scale,
|
| 199 |
+
controlnet_hed_inpaint_num_inference_step,
|
| 200 |
+
controlnet_hed_inpaint_controlnet_conditioning_scale,
|
| 201 |
+
controlnet_hed_inpaint_scheduler,
|
| 202 |
+
controlnet_hed_inpaint_seed_generator,
|
| 203 |
+
],
|
| 204 |
+
outputs=[output_image],
|
| 205 |
+
)
|
diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_mlsd.py
ADDED
|
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from controlnet_aux import MLSDdetector
|
| 5 |
+
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
| 6 |
+
|
| 7 |
+
from diffusion_webui.utils.model_list import (
|
| 8 |
+
controlnet_mlsd_model_list,
|
| 9 |
+
stable_model_list,
|
| 10 |
+
)
|
| 11 |
+
from diffusion_webui.utils.scheduler_list import (
|
| 12 |
+
SCHEDULER_LIST,
|
| 13 |
+
get_scheduler_list,
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
# https://github.com/mikonvergence/ControlNetInpaint
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class StableDiffusionControlNetInpaintMlsdGenerator:
|
| 20 |
+
def __init__(self):
|
| 21 |
+
self.pipe = None
|
| 22 |
+
|
| 23 |
+
def load_model(self, stable_model_path, controlnet_model_path, scheduler):
|
| 24 |
+
if self.pipe is None:
|
| 25 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 26 |
+
controlnet_model_path, torch_dtype=torch.float16
|
| 27 |
+
)
|
| 28 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 29 |
+
pretrained_model_name_or_path=stable_model_path,
|
| 30 |
+
controlnet=controlnet,
|
| 31 |
+
safety_checker=None,
|
| 32 |
+
torch_dtype=torch.float16,
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
| 36 |
+
self.pipe.to("cuda")
|
| 37 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
| 38 |
+
|
| 39 |
+
return self.pipe
|
| 40 |
+
|
| 41 |
+
def controlnet_inpaint_mlsd(self, image_path: str):
|
| 42 |
+
mlsd = MLSDdetector.from_pretrained("lllyasviel/ControlNet")
|
| 43 |
+
image = image_path["image"].convert("RGB").resize((512, 512))
|
| 44 |
+
image = np.array(image)
|
| 45 |
+
image = mlsd(image)
|
| 46 |
+
|
| 47 |
+
return image
|
| 48 |
+
|
| 49 |
+
def generate_image(
|
| 50 |
+
self,
|
| 51 |
+
image_path: str,
|
| 52 |
+
stable_model_path: str,
|
| 53 |
+
controlnet_model_path: str,
|
| 54 |
+
prompt: str,
|
| 55 |
+
negative_prompt: str,
|
| 56 |
+
num_images_per_prompt: int,
|
| 57 |
+
guidance_scale: int,
|
| 58 |
+
num_inference_step: int,
|
| 59 |
+
controlnet_conditioning_scale: int,
|
| 60 |
+
scheduler: str,
|
| 61 |
+
seed_generator: int,
|
| 62 |
+
):
|
| 63 |
+
|
| 64 |
+
image = self.controlnet_inpaint_mlsd(image_path=image_path)
|
| 65 |
+
|
| 66 |
+
pipe = self.load_model(
|
| 67 |
+
stable_model_path=stable_model_path,
|
| 68 |
+
controlnet_model_path=controlnet_model_path,
|
| 69 |
+
scheduler=scheduler,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
if seed_generator == 0:
|
| 73 |
+
random_seed = torch.randint(0, 1000000, (1,))
|
| 74 |
+
generator = torch.manual_seed(random_seed)
|
| 75 |
+
else:
|
| 76 |
+
generator = torch.manual_seed(seed_generator)
|
| 77 |
+
|
| 78 |
+
output = pipe(
|
| 79 |
+
prompt=prompt,
|
| 80 |
+
image=image,
|
| 81 |
+
negative_prompt=negative_prompt,
|
| 82 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 83 |
+
num_inference_steps=num_inference_step,
|
| 84 |
+
guidance_scale=guidance_scale,
|
| 85 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 86 |
+
generator=generator,
|
| 87 |
+
).images
|
| 88 |
+
|
| 89 |
+
return output
|
| 90 |
+
|
| 91 |
+
def app():
|
| 92 |
+
with gr.Blocks():
|
| 93 |
+
with gr.Row():
|
| 94 |
+
with gr.Column():
|
| 95 |
+
controlnet_mlsd_inpaint_image_file = gr.Image(
|
| 96 |
+
source="upload",
|
| 97 |
+
tool="sketch",
|
| 98 |
+
elem_id="image_upload",
|
| 99 |
+
type="pil",
|
| 100 |
+
label="Upload",
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
controlnet_mlsd_inpaint_prompt = gr.Textbox(
|
| 104 |
+
lines=1, placeholder="Prompt", show_label=False
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
controlnet_mlsd_inpaint_negative_prompt = gr.Textbox(
|
| 108 |
+
lines=1,
|
| 109 |
+
show_label=False,
|
| 110 |
+
placeholder="Negative Prompt",
|
| 111 |
+
)
|
| 112 |
+
with gr.Row():
|
| 113 |
+
with gr.Column():
|
| 114 |
+
controlnet_mlsd_inpaint_stable_model_id = (
|
| 115 |
+
gr.Dropdown(
|
| 116 |
+
choices=stable_model_list,
|
| 117 |
+
value=stable_model_list[0],
|
| 118 |
+
label="Stable Model Id",
|
| 119 |
+
)
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
controlnet_mlsd_inpaint_guidance_scale = gr.Slider(
|
| 123 |
+
minimum=0.1,
|
| 124 |
+
maximum=15,
|
| 125 |
+
step=0.1,
|
| 126 |
+
value=7.5,
|
| 127 |
+
label="Guidance Scale",
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
controlnet_mlsd_inpaint_num_inference_step = (
|
| 131 |
+
gr.Slider(
|
| 132 |
+
minimum=1,
|
| 133 |
+
maximum=100,
|
| 134 |
+
step=1,
|
| 135 |
+
value=50,
|
| 136 |
+
label="Num Inference Step",
|
| 137 |
+
)
|
| 138 |
+
)
|
| 139 |
+
controlnet_mlsd_inpaint_num_images_per_prompt = (
|
| 140 |
+
gr.Slider(
|
| 141 |
+
minimum=1,
|
| 142 |
+
maximum=10,
|
| 143 |
+
step=1,
|
| 144 |
+
value=1,
|
| 145 |
+
label="Number Of Images",
|
| 146 |
+
)
|
| 147 |
+
)
|
| 148 |
+
with gr.Row():
|
| 149 |
+
with gr.Column():
|
| 150 |
+
controlnet_mlsd_inpaint_model_id = gr.Dropdown(
|
| 151 |
+
choices=controlnet_mlsd_model_list,
|
| 152 |
+
value=controlnet_mlsd_model_list[0],
|
| 153 |
+
label="Controlnet Model Id",
|
| 154 |
+
)
|
| 155 |
+
controlnet_mlsd_inpaint_scheduler = gr.Dropdown(
|
| 156 |
+
choices=SCHEDULER_LIST,
|
| 157 |
+
value=SCHEDULER_LIST[0],
|
| 158 |
+
label="Scheduler",
|
| 159 |
+
)
|
| 160 |
+
controlnet_mlsd_inpaint_controlnet_conditioning_scale = gr.Slider(
|
| 161 |
+
minimum=0.1,
|
| 162 |
+
maximum=1.0,
|
| 163 |
+
step=0.1,
|
| 164 |
+
value=0.5,
|
| 165 |
+
label="Controlnet Conditioning Scale",
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
controlnet_mlsd_inpaint_seed_generator = (
|
| 169 |
+
gr.Slider(
|
| 170 |
+
minimum=0,
|
| 171 |
+
maximum=1000000,
|
| 172 |
+
step=1,
|
| 173 |
+
value=0,
|
| 174 |
+
label="Seed Generator",
|
| 175 |
+
)
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
controlnet_mlsd_inpaint_predict = gr.Button(
|
| 179 |
+
value="Generator"
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
with gr.Column():
|
| 183 |
+
output_image = gr.Gallery(
|
| 184 |
+
label="Generated images",
|
| 185 |
+
show_label=False,
|
| 186 |
+
elem_id="gallery",
|
| 187 |
+
).style(grid=(1, 2))
|
| 188 |
+
|
| 189 |
+
controlnet_mlsd_inpaint_predict.click(
|
| 190 |
+
fn=StableDiffusionControlNetInpaintMlsdGenerator().generate_image,
|
| 191 |
+
inputs=[
|
| 192 |
+
controlnet_mlsd_inpaint_image_file,
|
| 193 |
+
controlnet_mlsd_inpaint_stable_model_id,
|
| 194 |
+
controlnet_mlsd_inpaint_model_id,
|
| 195 |
+
controlnet_mlsd_inpaint_prompt,
|
| 196 |
+
controlnet_mlsd_inpaint_negative_prompt,
|
| 197 |
+
controlnet_mlsd_inpaint_num_images_per_prompt,
|
| 198 |
+
controlnet_mlsd_inpaint_guidance_scale,
|
| 199 |
+
controlnet_mlsd_inpaint_num_inference_step,
|
| 200 |
+
controlnet_mlsd_inpaint_controlnet_conditioning_scale,
|
| 201 |
+
controlnet_mlsd_inpaint_scheduler,
|
| 202 |
+
controlnet_mlsd_inpaint_seed_generator,
|
| 203 |
+
],
|
| 204 |
+
outputs=[output_image],
|
| 205 |
+
)
|
diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_pose.py
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from controlnet_aux import OpenposeDetector
|
| 5 |
+
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
| 6 |
+
|
| 7 |
+
from diffusion_webui.utils.model_list import (
|
| 8 |
+
controlnet_pose_model_list,
|
| 9 |
+
stable_model_list,
|
| 10 |
+
)
|
| 11 |
+
from diffusion_webui.utils.scheduler_list import (
|
| 12 |
+
SCHEDULER_LIST,
|
| 13 |
+
get_scheduler_list,
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
# https://github.com/mikonvergence/ControlNetInpaint
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class StableDiffusionControlNetInpaintPoseGenerator:
|
| 20 |
+
def __init__(self):
|
| 21 |
+
self.pipe = None
|
| 22 |
+
|
| 23 |
+
def load_model(self, stable_model_path, controlnet_model_path, scheduler):
|
| 24 |
+
if self.pipe is None:
|
| 25 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 26 |
+
controlnet_model_path, torch_dtype=torch.float16
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 30 |
+
pretrained_model_name_or_path=stable_model_path,
|
| 31 |
+
controlnet=controlnet,
|
| 32 |
+
safety_checker=None,
|
| 33 |
+
torch_dtype=torch.float16,
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
| 37 |
+
self.pipe.to("cuda")
|
| 38 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
| 39 |
+
|
| 40 |
+
return self.pipe
|
| 41 |
+
|
| 42 |
+
def controlnet_pose_inpaint(self, image_path: str):
|
| 43 |
+
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
|
| 44 |
+
|
| 45 |
+
image = image_path["image"].convert("RGB").resize((512, 512))
|
| 46 |
+
image = np.array(image)
|
| 47 |
+
image = openpose(image)
|
| 48 |
+
|
| 49 |
+
return image
|
| 50 |
+
|
| 51 |
+
def generate_image(
|
| 52 |
+
self,
|
| 53 |
+
image_path: str,
|
| 54 |
+
stable_model_path: str,
|
| 55 |
+
controlnet_model_path: str,
|
| 56 |
+
prompt: str,
|
| 57 |
+
negative_prompt: str,
|
| 58 |
+
num_images_per_prompt: int,
|
| 59 |
+
guidance_scale: int,
|
| 60 |
+
num_inference_step: int,
|
| 61 |
+
controlnet_conditioning_scale: int,
|
| 62 |
+
scheduler: str,
|
| 63 |
+
seed_generator: int,
|
| 64 |
+
):
|
| 65 |
+
|
| 66 |
+
image = self.controlnet_pose_inpaint(image_path=image_path)
|
| 67 |
+
|
| 68 |
+
pipe = self.load_model(
|
| 69 |
+
stable_model_path=stable_model_path,
|
| 70 |
+
controlnet_model_path=controlnet_model_path,
|
| 71 |
+
scheduler=scheduler,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
if seed_generator == 0:
|
| 75 |
+
random_seed = torch.randint(0, 1000000, (1,))
|
| 76 |
+
generator = torch.manual_seed(random_seed)
|
| 77 |
+
else:
|
| 78 |
+
generator = torch.manual_seed(seed_generator)
|
| 79 |
+
|
| 80 |
+
output = pipe(
|
| 81 |
+
prompt=prompt,
|
| 82 |
+
image=image,
|
| 83 |
+
negative_prompt=negative_prompt,
|
| 84 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 85 |
+
num_inference_steps=num_inference_step,
|
| 86 |
+
guidance_scale=guidance_scale,
|
| 87 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 88 |
+
generator=generator,
|
| 89 |
+
).images
|
| 90 |
+
|
| 91 |
+
return output
|
| 92 |
+
|
| 93 |
+
def app():
|
| 94 |
+
with gr.Blocks():
|
| 95 |
+
with gr.Row():
|
| 96 |
+
with gr.Column():
|
| 97 |
+
controlnet_pose_inpaint_image_file = gr.Image(
|
| 98 |
+
source="upload",
|
| 99 |
+
tool="sketch",
|
| 100 |
+
elem_id="image_upload",
|
| 101 |
+
type="pil",
|
| 102 |
+
label="Upload",
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
controlnet_pose_inpaint_prompt = gr.Textbox(
|
| 106 |
+
lines=1, placeholder="Prompt", show_label=False
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
controlnet_pose_inpaint_negative_prompt = gr.Textbox(
|
| 110 |
+
lines=1,
|
| 111 |
+
show_label=False,
|
| 112 |
+
placeholder="Negative Prompt",
|
| 113 |
+
)
|
| 114 |
+
with gr.Row():
|
| 115 |
+
with gr.Column():
|
| 116 |
+
controlnet_pose_inpaint_stable_model_id = (
|
| 117 |
+
gr.Dropdown(
|
| 118 |
+
choices=stable_model_list,
|
| 119 |
+
value=stable_model_list[0],
|
| 120 |
+
label="Stable Model Id",
|
| 121 |
+
)
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
controlnet_pose_inpaint_guidance_scale = gr.Slider(
|
| 125 |
+
minimum=0.1,
|
| 126 |
+
maximum=15,
|
| 127 |
+
step=0.1,
|
| 128 |
+
value=7.5,
|
| 129 |
+
label="Guidance Scale",
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
controlnet_pose_inpaint_num_inference_step = (
|
| 133 |
+
gr.Slider(
|
| 134 |
+
minimum=1,
|
| 135 |
+
maximum=100,
|
| 136 |
+
step=1,
|
| 137 |
+
value=50,
|
| 138 |
+
label="Num Inference Step",
|
| 139 |
+
)
|
| 140 |
+
)
|
| 141 |
+
controlnet_pose_inpaint_num_images_per_prompt = (
|
| 142 |
+
gr.Slider(
|
| 143 |
+
minimum=1,
|
| 144 |
+
maximum=10,
|
| 145 |
+
step=1,
|
| 146 |
+
value=1,
|
| 147 |
+
label="Number Of Images",
|
| 148 |
+
)
|
| 149 |
+
)
|
| 150 |
+
with gr.Row():
|
| 151 |
+
with gr.Column():
|
| 152 |
+
controlnet_pose_inpaint_model_id = gr.Dropdown(
|
| 153 |
+
choices=controlnet_pose_model_list,
|
| 154 |
+
value=controlnet_pose_model_list[0],
|
| 155 |
+
label="Controlnet Model Id",
|
| 156 |
+
)
|
| 157 |
+
controlnet_pose_inpaint_scheduler = gr.Dropdown(
|
| 158 |
+
choices=SCHEDULER_LIST,
|
| 159 |
+
value=SCHEDULER_LIST[0],
|
| 160 |
+
label="Scheduler",
|
| 161 |
+
)
|
| 162 |
+
controlnet_pose_inpaint_controlnet_conditioning_scale = gr.Slider(
|
| 163 |
+
minimum=0.1,
|
| 164 |
+
maximum=1.0,
|
| 165 |
+
step=0.1,
|
| 166 |
+
value=0.5,
|
| 167 |
+
label="Controlnet Conditioning Scale",
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
controlnet_pose_inpaint_seed_generator = (
|
| 171 |
+
gr.Slider(
|
| 172 |
+
minimum=0,
|
| 173 |
+
maximum=1000000,
|
| 174 |
+
step=1,
|
| 175 |
+
value=0,
|
| 176 |
+
label="Seed Generator",
|
| 177 |
+
)
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
controlnet_pose_inpaint_predict = gr.Button(
|
| 181 |
+
value="Generator"
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
with gr.Column():
|
| 185 |
+
output_image = gr.Gallery(
|
| 186 |
+
label="Generated images",
|
| 187 |
+
show_label=False,
|
| 188 |
+
elem_id="gallery",
|
| 189 |
+
).style(grid=(1, 2))
|
| 190 |
+
|
| 191 |
+
controlnet_pose_inpaint_predict.click(
|
| 192 |
+
fn=StableDiffusionControlNetInpaintPoseGenerator().generate_image,
|
| 193 |
+
inputs=[
|
| 194 |
+
controlnet_pose_inpaint_image_file,
|
| 195 |
+
controlnet_pose_inpaint_stable_model_id,
|
| 196 |
+
controlnet_pose_inpaint_model_id,
|
| 197 |
+
controlnet_pose_inpaint_prompt,
|
| 198 |
+
controlnet_pose_inpaint_negative_prompt,
|
| 199 |
+
controlnet_pose_inpaint_num_images_per_prompt,
|
| 200 |
+
controlnet_pose_inpaint_guidance_scale,
|
| 201 |
+
controlnet_pose_inpaint_num_inference_step,
|
| 202 |
+
controlnet_pose_inpaint_controlnet_conditioning_scale,
|
| 203 |
+
controlnet_pose_inpaint_scheduler,
|
| 204 |
+
controlnet_pose_inpaint_seed_generator,
|
| 205 |
+
],
|
| 206 |
+
outputs=[output_image],
|
| 207 |
+
)
|
diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_scribble.py
ADDED
|
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from controlnet_aux import HEDdetector
|
| 5 |
+
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
| 6 |
+
|
| 7 |
+
from diffusion_webui.utils.model_list import (
|
| 8 |
+
controlnet_scribble_model_list,
|
| 9 |
+
stable_model_list,
|
| 10 |
+
)
|
| 11 |
+
from diffusion_webui.utils.scheduler_list import (
|
| 12 |
+
SCHEDULER_LIST,
|
| 13 |
+
get_scheduler_list,
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
# https://github.com/mikonvergence/ControlNetInpaint
|
| 17 |
+
|
| 18 |
+
class StableDiffusionControlNetInpaintScribbleGenerator:
|
| 19 |
+
def __init__(self):
|
| 20 |
+
self.pipe = None
|
| 21 |
+
|
| 22 |
+
def load_model(self, stable_model_path, controlnet_model_path, scheduler):
|
| 23 |
+
if self.pipe is None:
|
| 24 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 25 |
+
controlnet_model_path, torch_dtype=torch.float16
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 29 |
+
pretrained_model_name_or_path=stable_model_path,
|
| 30 |
+
controlnet=controlnet,
|
| 31 |
+
safety_checker=None,
|
| 32 |
+
torch_dtype=torch.float16,
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
| 36 |
+
self.pipe.to("cuda")
|
| 37 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
| 38 |
+
|
| 39 |
+
return self.pipe
|
| 40 |
+
|
| 41 |
+
def controlnet_inpaint_scribble(self, image_path: str):
|
| 42 |
+
hed = HEDdetector.from_pretrained("lllyasviel/ControlNet")
|
| 43 |
+
|
| 44 |
+
image = image_path["image"].convert("RGB").resize((512, 512))
|
| 45 |
+
image = np.array(image)
|
| 46 |
+
image = hed(image, scribble=True)
|
| 47 |
+
|
| 48 |
+
return image
|
| 49 |
+
|
| 50 |
+
def generate_image(
|
| 51 |
+
self,
|
| 52 |
+
image_path: str,
|
| 53 |
+
stable_model_path: str,
|
| 54 |
+
controlnet_model_path: str,
|
| 55 |
+
prompt: str,
|
| 56 |
+
negative_prompt: str,
|
| 57 |
+
num_images_per_prompt: int,
|
| 58 |
+
guidance_scale: int,
|
| 59 |
+
num_inference_step: int,
|
| 60 |
+
controlnet_conditioning_scale: int,
|
| 61 |
+
scheduler: str,
|
| 62 |
+
seed_generator: int,
|
| 63 |
+
):
|
| 64 |
+
|
| 65 |
+
image = self.controlnet_inpaint_scribble(image_path=image_path)
|
| 66 |
+
|
| 67 |
+
pipe = self.load_model(
|
| 68 |
+
stable_model_path=stable_model_path,
|
| 69 |
+
controlnet_model_path=controlnet_model_path,
|
| 70 |
+
scheduler=scheduler,
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
if seed_generator == 0:
|
| 74 |
+
random_seed = torch.randint(0, 1000000, (1,))
|
| 75 |
+
generator = torch.manual_seed(random_seed)
|
| 76 |
+
else:
|
| 77 |
+
generator = torch.manual_seed(seed_generator)
|
| 78 |
+
|
| 79 |
+
output = pipe(
|
| 80 |
+
prompt=prompt,
|
| 81 |
+
image=image,
|
| 82 |
+
negative_prompt=negative_prompt,
|
| 83 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 84 |
+
num_inference_steps=num_inference_step,
|
| 85 |
+
guidance_scale=guidance_scale,
|
| 86 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 87 |
+
generator=generator,
|
| 88 |
+
).images
|
| 89 |
+
|
| 90 |
+
return output
|
| 91 |
+
|
| 92 |
+
def app():
|
| 93 |
+
with gr.Blocks():
|
| 94 |
+
with gr.Row():
|
| 95 |
+
with gr.Column():
|
| 96 |
+
controlnet_scribble_inpaint_image_file = gr.Image(
|
| 97 |
+
source="upload",
|
| 98 |
+
tool="sketch",
|
| 99 |
+
elem_id="image_upload",
|
| 100 |
+
type="pil",
|
| 101 |
+
label="Upload",
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
controlnet_scribble_inpaint_prompt = gr.Textbox(
|
| 105 |
+
lines=1, placeholder="Prompt", show_label=False
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
controlnet_scribble_inpaint_negative_prompt = gr.Textbox(
|
| 109 |
+
lines=1,
|
| 110 |
+
show_label=False,
|
| 111 |
+
placeholder="Negative Prompt",
|
| 112 |
+
)
|
| 113 |
+
with gr.Row():
|
| 114 |
+
with gr.Column():
|
| 115 |
+
controlnet_scribble_inpaint_stable_model_id = (
|
| 116 |
+
gr.Dropdown(
|
| 117 |
+
choices=stable_model_list,
|
| 118 |
+
value=stable_model_list[0],
|
| 119 |
+
label="Stable Model Id",
|
| 120 |
+
)
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
controlnet_scribble_inpaint_guidance_scale = (
|
| 124 |
+
gr.Slider(
|
| 125 |
+
minimum=0.1,
|
| 126 |
+
maximum=15,
|
| 127 |
+
step=0.1,
|
| 128 |
+
value=7.5,
|
| 129 |
+
label="Guidance Scale",
|
| 130 |
+
)
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
controlnet_scribble_inpaint_num_inference_step = (
|
| 134 |
+
gr.Slider(
|
| 135 |
+
minimum=1,
|
| 136 |
+
maximum=100,
|
| 137 |
+
step=1,
|
| 138 |
+
value=50,
|
| 139 |
+
label="Num Inference Step",
|
| 140 |
+
)
|
| 141 |
+
)
|
| 142 |
+
controlnet_scribble_inpaint_num_images_per_prompt = gr.Slider(
|
| 143 |
+
minimum=1,
|
| 144 |
+
maximum=10,
|
| 145 |
+
step=1,
|
| 146 |
+
value=1,
|
| 147 |
+
label="Number Of Images",
|
| 148 |
+
)
|
| 149 |
+
with gr.Row():
|
| 150 |
+
with gr.Column():
|
| 151 |
+
controlnet_scribble_inpaint_model_id = (
|
| 152 |
+
gr.Dropdown(
|
| 153 |
+
choices=controlnet_scribble_model_list,
|
| 154 |
+
value=controlnet_scribble_model_list[0],
|
| 155 |
+
label="Controlnet Model Id",
|
| 156 |
+
)
|
| 157 |
+
)
|
| 158 |
+
controlnet_scribble_inpaint_scheduler = (
|
| 159 |
+
gr.Dropdown(
|
| 160 |
+
choices=SCHEDULER_LIST,
|
| 161 |
+
value=SCHEDULER_LIST[0],
|
| 162 |
+
label="Scheduler",
|
| 163 |
+
)
|
| 164 |
+
)
|
| 165 |
+
controlnet_scribble_inpaint_controlnet_conditioning_scale = gr.Slider(
|
| 166 |
+
minimum=0.1,
|
| 167 |
+
maximum=1.0,
|
| 168 |
+
step=0.1,
|
| 169 |
+
value=0.5,
|
| 170 |
+
label="Controlnet Conditioning Scale",
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
controlnet_scribble_inpaint_seed_generator = (
|
| 174 |
+
gr.Slider(
|
| 175 |
+
minimum=0,
|
| 176 |
+
maximum=1000000,
|
| 177 |
+
step=1,
|
| 178 |
+
value=0,
|
| 179 |
+
label="Seed Generator",
|
| 180 |
+
)
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
controlnet_scribble_inpaint_predict = gr.Button(
|
| 184 |
+
value="Generator"
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
with gr.Column():
|
| 188 |
+
output_image = gr.Gallery(
|
| 189 |
+
label="Generated images",
|
| 190 |
+
show_label=False,
|
| 191 |
+
elem_id="gallery",
|
| 192 |
+
).style(grid=(1, 2))
|
| 193 |
+
|
| 194 |
+
controlnet_scribble_inpaint_predict.click(
|
| 195 |
+
fn=StableDiffusionControlNetInpaintScribbleGenerator().generate_image,
|
| 196 |
+
inputs=[
|
| 197 |
+
controlnet_scribble_inpaint_image_file,
|
| 198 |
+
controlnet_scribble_inpaint_stable_model_id,
|
| 199 |
+
controlnet_scribble_inpaint_model_id,
|
| 200 |
+
controlnet_scribble_inpaint_prompt,
|
| 201 |
+
controlnet_scribble_inpaint_negative_prompt,
|
| 202 |
+
controlnet_scribble_inpaint_num_images_per_prompt,
|
| 203 |
+
controlnet_scribble_inpaint_guidance_scale,
|
| 204 |
+
controlnet_scribble_inpaint_num_inference_step,
|
| 205 |
+
controlnet_scribble_inpaint_controlnet_conditioning_scale,
|
| 206 |
+
controlnet_scribble_inpaint_scheduler,
|
| 207 |
+
controlnet_scribble_inpaint_seed_generator,
|
| 208 |
+
],
|
| 209 |
+
outputs=[output_image],
|
| 210 |
+
)
|
diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_seg.py
ADDED
|
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
| 7 |
+
|
| 8 |
+
from diffusion_webui.utils.model_list import (
|
| 9 |
+
controlnet_seg_model_list,
|
| 10 |
+
stable_model_list,
|
| 11 |
+
)
|
| 12 |
+
from diffusion_webui.utils.scheduler_list import (
|
| 13 |
+
SCHEDULER_LIST,
|
| 14 |
+
get_scheduler_list,
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
# https://github.com/mikonvergence/ControlNetInpaint
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def ade_palette():
|
| 21 |
+
"""ADE20K palette that maps each class to RGB values."""
|
| 22 |
+
return [
|
| 23 |
+
[120, 120, 120],
|
| 24 |
+
[180, 120, 120],
|
| 25 |
+
[6, 230, 230],
|
| 26 |
+
[80, 50, 50],
|
| 27 |
+
[4, 200, 3],
|
| 28 |
+
[120, 120, 80],
|
| 29 |
+
[140, 140, 140],
|
| 30 |
+
[204, 5, 255],
|
| 31 |
+
[230, 230, 230],
|
| 32 |
+
[4, 250, 7],
|
| 33 |
+
[224, 5, 255],
|
| 34 |
+
[235, 255, 7],
|
| 35 |
+
[150, 5, 61],
|
| 36 |
+
[120, 120, 70],
|
| 37 |
+
[8, 255, 51],
|
| 38 |
+
[255, 6, 82],
|
| 39 |
+
[143, 255, 140],
|
| 40 |
+
[204, 255, 4],
|
| 41 |
+
[255, 51, 7],
|
| 42 |
+
[204, 70, 3],
|
| 43 |
+
[0, 102, 200],
|
| 44 |
+
[61, 230, 250],
|
| 45 |
+
[255, 6, 51],
|
| 46 |
+
[11, 102, 255],
|
| 47 |
+
[255, 7, 71],
|
| 48 |
+
[255, 9, 224],
|
| 49 |
+
[9, 7, 230],
|
| 50 |
+
[220, 220, 220],
|
| 51 |
+
[255, 9, 92],
|
| 52 |
+
[112, 9, 255],
|
| 53 |
+
[8, 255, 214],
|
| 54 |
+
[7, 255, 224],
|
| 55 |
+
[255, 184, 6],
|
| 56 |
+
[10, 255, 71],
|
| 57 |
+
[255, 41, 10],
|
| 58 |
+
[7, 255, 255],
|
| 59 |
+
[224, 255, 8],
|
| 60 |
+
[102, 8, 255],
|
| 61 |
+
[255, 61, 6],
|
| 62 |
+
[255, 194, 7],
|
| 63 |
+
[255, 122, 8],
|
| 64 |
+
[0, 255, 20],
|
| 65 |
+
[255, 8, 41],
|
| 66 |
+
[255, 5, 153],
|
| 67 |
+
[6, 51, 255],
|
| 68 |
+
[235, 12, 255],
|
| 69 |
+
[160, 150, 20],
|
| 70 |
+
[0, 163, 255],
|
| 71 |
+
[140, 140, 140],
|
| 72 |
+
[250, 10, 15],
|
| 73 |
+
[20, 255, 0],
|
| 74 |
+
[31, 255, 0],
|
| 75 |
+
[255, 31, 0],
|
| 76 |
+
[255, 224, 0],
|
| 77 |
+
[153, 255, 0],
|
| 78 |
+
[0, 0, 255],
|
| 79 |
+
[255, 71, 0],
|
| 80 |
+
[0, 235, 255],
|
| 81 |
+
[0, 173, 255],
|
| 82 |
+
[31, 0, 255],
|
| 83 |
+
[11, 200, 200],
|
| 84 |
+
[255, 82, 0],
|
| 85 |
+
[0, 255, 245],
|
| 86 |
+
[0, 61, 255],
|
| 87 |
+
[0, 255, 112],
|
| 88 |
+
[0, 255, 133],
|
| 89 |
+
[255, 0, 0],
|
| 90 |
+
[255, 163, 0],
|
| 91 |
+
[255, 102, 0],
|
| 92 |
+
[194, 255, 0],
|
| 93 |
+
[0, 143, 255],
|
| 94 |
+
[51, 255, 0],
|
| 95 |
+
[0, 82, 255],
|
| 96 |
+
[0, 255, 41],
|
| 97 |
+
[0, 255, 173],
|
| 98 |
+
[10, 0, 255],
|
| 99 |
+
[173, 255, 0],
|
| 100 |
+
[0, 255, 153],
|
| 101 |
+
[255, 92, 0],
|
| 102 |
+
[255, 0, 255],
|
| 103 |
+
[255, 0, 245],
|
| 104 |
+
[255, 0, 102],
|
| 105 |
+
[255, 173, 0],
|
| 106 |
+
[255, 0, 20],
|
| 107 |
+
[255, 184, 184],
|
| 108 |
+
[0, 31, 255],
|
| 109 |
+
[0, 255, 61],
|
| 110 |
+
[0, 71, 255],
|
| 111 |
+
[255, 0, 204],
|
| 112 |
+
[0, 255, 194],
|
| 113 |
+
[0, 255, 82],
|
| 114 |
+
[0, 10, 255],
|
| 115 |
+
[0, 112, 255],
|
| 116 |
+
[51, 0, 255],
|
| 117 |
+
[0, 194, 255],
|
| 118 |
+
[0, 122, 255],
|
| 119 |
+
[0, 255, 163],
|
| 120 |
+
[255, 153, 0],
|
| 121 |
+
[0, 255, 10],
|
| 122 |
+
[255, 112, 0],
|
| 123 |
+
[143, 255, 0],
|
| 124 |
+
[82, 0, 255],
|
| 125 |
+
[163, 255, 0],
|
| 126 |
+
[255, 235, 0],
|
| 127 |
+
[8, 184, 170],
|
| 128 |
+
[133, 0, 255],
|
| 129 |
+
[0, 255, 92],
|
| 130 |
+
[184, 0, 255],
|
| 131 |
+
[255, 0, 31],
|
| 132 |
+
[0, 184, 255],
|
| 133 |
+
[0, 214, 255],
|
| 134 |
+
[255, 0, 112],
|
| 135 |
+
[92, 255, 0],
|
| 136 |
+
[0, 224, 255],
|
| 137 |
+
[112, 224, 255],
|
| 138 |
+
[70, 184, 160],
|
| 139 |
+
[163, 0, 255],
|
| 140 |
+
[153, 0, 255],
|
| 141 |
+
[71, 255, 0],
|
| 142 |
+
[255, 0, 163],
|
| 143 |
+
[255, 204, 0],
|
| 144 |
+
[255, 0, 143],
|
| 145 |
+
[0, 255, 235],
|
| 146 |
+
[133, 255, 0],
|
| 147 |
+
[255, 0, 235],
|
| 148 |
+
[245, 0, 255],
|
| 149 |
+
[255, 0, 122],
|
| 150 |
+
[255, 245, 0],
|
| 151 |
+
[10, 190, 212],
|
| 152 |
+
[214, 255, 0],
|
| 153 |
+
[0, 204, 255],
|
| 154 |
+
[20, 0, 255],
|
| 155 |
+
[255, 255, 0],
|
| 156 |
+
[0, 153, 255],
|
| 157 |
+
[0, 41, 255],
|
| 158 |
+
[0, 255, 204],
|
| 159 |
+
[41, 0, 255],
|
| 160 |
+
[41, 255, 0],
|
| 161 |
+
[173, 0, 255],
|
| 162 |
+
[0, 245, 255],
|
| 163 |
+
[71, 0, 255],
|
| 164 |
+
[122, 0, 255],
|
| 165 |
+
[0, 255, 184],
|
| 166 |
+
[0, 92, 255],
|
| 167 |
+
[184, 255, 0],
|
| 168 |
+
[0, 133, 255],
|
| 169 |
+
[255, 214, 0],
|
| 170 |
+
[25, 194, 194],
|
| 171 |
+
[102, 255, 0],
|
| 172 |
+
[92, 0, 255],
|
| 173 |
+
]
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
class StableDiffusionControlNetInpaintSegGenerator:
|
| 177 |
+
def __init__(self):
|
| 178 |
+
self.pipe = None
|
| 179 |
+
|
| 180 |
+
def load_model(
|
| 181 |
+
self,
|
| 182 |
+
stable_model_path,
|
| 183 |
+
controlnet_model_path,
|
| 184 |
+
scheduler,
|
| 185 |
+
):
|
| 186 |
+
|
| 187 |
+
if self.pipe is None:
|
| 188 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 189 |
+
controlnet_model_path, torch_dtype=torch.float16
|
| 190 |
+
)
|
| 191 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 192 |
+
pretrained_model_name_or_path=stable_model_path,
|
| 193 |
+
controlnet=controlnet,
|
| 194 |
+
safety_checker=None,
|
| 195 |
+
torch_dtype=torch.float16,
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
| 199 |
+
self.pipe.to("cuda")
|
| 200 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
| 201 |
+
|
| 202 |
+
return self.pipe
|
| 203 |
+
|
| 204 |
+
def controlnet_seg_inpaint(self, image_path: str):
|
| 205 |
+
image_processor = AutoImageProcessor.from_pretrained(
|
| 206 |
+
"openmmlab/upernet-convnext-small"
|
| 207 |
+
)
|
| 208 |
+
image_segmentor = UperNetForSemanticSegmentation.from_pretrained(
|
| 209 |
+
"openmmlab/upernet-convnext-small"
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
image = image_path["image"].convert("RGB").resize((512, 512))
|
| 213 |
+
image = np.array(image)
|
| 214 |
+
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
| 215 |
+
|
| 216 |
+
with torch.no_grad():
|
| 217 |
+
outputs = image_segmentor(pixel_values)
|
| 218 |
+
|
| 219 |
+
seg = image_processor.post_process_semantic_segmentation(
|
| 220 |
+
outputs, target_sizes=[image.size[::-1]]
|
| 221 |
+
)[0]
|
| 222 |
+
|
| 223 |
+
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
|
| 224 |
+
palette = np.array(ade_palette())
|
| 225 |
+
|
| 226 |
+
for label, color in enumerate(palette):
|
| 227 |
+
color_seg[seg == label, :] = color
|
| 228 |
+
|
| 229 |
+
color_seg = color_seg.astype(np.uint8)
|
| 230 |
+
image = Image.fromarray(color_seg)
|
| 231 |
+
|
| 232 |
+
return image
|
| 233 |
+
|
| 234 |
+
def generate_image(
|
| 235 |
+
self,
|
| 236 |
+
image_path: str,
|
| 237 |
+
stable_model_path: str,
|
| 238 |
+
controlnet_model_path: str,
|
| 239 |
+
prompt: str,
|
| 240 |
+
negative_prompt: str,
|
| 241 |
+
num_images_per_prompt: int,
|
| 242 |
+
guidance_scale: int,
|
| 243 |
+
num_inference_step: int,
|
| 244 |
+
controlnet_conditioning_scale: int,
|
| 245 |
+
scheduler: str,
|
| 246 |
+
seed_generator: int,
|
| 247 |
+
):
|
| 248 |
+
|
| 249 |
+
image = self.controlnet_seg_inpaint(image_path=image_path)
|
| 250 |
+
|
| 251 |
+
pipe = self.load_model(
|
| 252 |
+
stable_model_path=stable_model_path,
|
| 253 |
+
controlnet_model_path=controlnet_model_path,
|
| 254 |
+
scheduler=scheduler,
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
if seed_generator == 0:
|
| 258 |
+
random_seed = torch.randint(0, 1000000, (1,))
|
| 259 |
+
generator = torch.manual_seed(random_seed)
|
| 260 |
+
else:
|
| 261 |
+
generator = torch.manual_seed(seed_generator)
|
| 262 |
+
|
| 263 |
+
output = pipe(
|
| 264 |
+
prompt=prompt,
|
| 265 |
+
image=image,
|
| 266 |
+
negative_prompt=negative_prompt,
|
| 267 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 268 |
+
num_inference_steps=num_inference_step,
|
| 269 |
+
guidance_scale=guidance_scale,
|
| 270 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 271 |
+
generator=generator,
|
| 272 |
+
).images
|
| 273 |
+
|
| 274 |
+
return output
|
| 275 |
+
|
| 276 |
+
def app():
|
| 277 |
+
with gr.Blocks():
|
| 278 |
+
with gr.Row():
|
| 279 |
+
with gr.Column():
|
| 280 |
+
controlnet_seg_inpaint_image_file = gr.Image(
|
| 281 |
+
source="upload",
|
| 282 |
+
tool="sketch",
|
| 283 |
+
elem_id="image_upload",
|
| 284 |
+
type="pil",
|
| 285 |
+
label="Upload",
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
controlnet_seg_inpaint_prompt = gr.Textbox(
|
| 289 |
+
lines=1, placeholder="Prompt", show_label=False
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
controlnet_seg_inpaint_negative_prompt = gr.Textbox(
|
| 293 |
+
lines=1,
|
| 294 |
+
show_label=False,
|
| 295 |
+
placeholder="Negative Prompt",
|
| 296 |
+
)
|
| 297 |
+
with gr.Row():
|
| 298 |
+
with gr.Column():
|
| 299 |
+
controlnet_seg_inpaint_stable_model_id = (
|
| 300 |
+
gr.Dropdown(
|
| 301 |
+
choices=stable_model_list,
|
| 302 |
+
value=stable_model_list[0],
|
| 303 |
+
label="Stable Model Id",
|
| 304 |
+
)
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
controlnet_seg_inpaint_guidance_scale = gr.Slider(
|
| 308 |
+
minimum=0.1,
|
| 309 |
+
maximum=15,
|
| 310 |
+
step=0.1,
|
| 311 |
+
value=7.5,
|
| 312 |
+
label="Guidance Scale",
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
controlnet_seg_inpaint_num_inference_step = (
|
| 316 |
+
gr.Slider(
|
| 317 |
+
minimum=1,
|
| 318 |
+
maximum=100,
|
| 319 |
+
step=1,
|
| 320 |
+
value=50,
|
| 321 |
+
label="Num Inference Step",
|
| 322 |
+
)
|
| 323 |
+
)
|
| 324 |
+
controlnet_seg_inpaint_num_images_per_prompt = (
|
| 325 |
+
gr.Slider(
|
| 326 |
+
minimum=1,
|
| 327 |
+
maximum=10,
|
| 328 |
+
step=1,
|
| 329 |
+
value=1,
|
| 330 |
+
label="Number Of Images",
|
| 331 |
+
)
|
| 332 |
+
)
|
| 333 |
+
with gr.Row():
|
| 334 |
+
with gr.Column():
|
| 335 |
+
controlnet_seg_inpaint_model_id = gr.Dropdown(
|
| 336 |
+
choices=controlnet_seg_model_list,
|
| 337 |
+
value=controlnet_seg_model_list[0],
|
| 338 |
+
label="Controlnet Model Id",
|
| 339 |
+
)
|
| 340 |
+
controlnet_seg_inpaint_scheduler = gr.Dropdown(
|
| 341 |
+
choices=SCHEDULER_LIST,
|
| 342 |
+
value=SCHEDULER_LIST[0],
|
| 343 |
+
label="Scheduler",
|
| 344 |
+
)
|
| 345 |
+
controlnet_seg_inpaint_controlnet_conditioning_scale = gr.Slider(
|
| 346 |
+
minimum=0.1,
|
| 347 |
+
maximum=1.0,
|
| 348 |
+
step=0.1,
|
| 349 |
+
value=0.5,
|
| 350 |
+
label="Controlnet Conditioning Scale",
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
controlnet_seg_inpaint_seed_generator = (
|
| 354 |
+
gr.Slider(
|
| 355 |
+
minimum=0,
|
| 356 |
+
maximum=1000000,
|
| 357 |
+
step=1,
|
| 358 |
+
value=0,
|
| 359 |
+
label="Seed Generator",
|
| 360 |
+
)
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
controlnet_seg_inpaint_predict = gr.Button(
|
| 364 |
+
value="Generator"
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
with gr.Column():
|
| 368 |
+
output_image = gr.Gallery(
|
| 369 |
+
label="Generated images",
|
| 370 |
+
show_label=False,
|
| 371 |
+
elem_id="gallery",
|
| 372 |
+
).style(grid=(1, 2))
|
| 373 |
+
|
| 374 |
+
controlnet_seg_inpaint_predict.click(
|
| 375 |
+
fn=StableDiffusionControlNetInpaintSegGenerator().generate_image,
|
| 376 |
+
inputs=[
|
| 377 |
+
controlnet_seg_inpaint_image_file,
|
| 378 |
+
controlnet_seg_inpaint_stable_model_id,
|
| 379 |
+
controlnet_seg_inpaint_model_id,
|
| 380 |
+
controlnet_seg_inpaint_prompt,
|
| 381 |
+
controlnet_seg_inpaint_negative_prompt,
|
| 382 |
+
controlnet_seg_inpaint_num_images_per_prompt,
|
| 383 |
+
controlnet_seg_inpaint_guidance_scale,
|
| 384 |
+
controlnet_seg_inpaint_num_inference_step,
|
| 385 |
+
controlnet_seg_inpaint_controlnet_conditioning_scale,
|
| 386 |
+
controlnet_seg_inpaint_scheduler,
|
| 387 |
+
controlnet_seg_inpaint_seed_generator,
|
| 388 |
+
],
|
| 389 |
+
outputs=[output_image],
|
| 390 |
+
)
|
diffusion_webui/diffusion_models/controlnet/controlnet_seg.py
CHANGED
|
@@ -203,7 +203,7 @@ class StableDiffusionControlNetSegGenerator:
|
|
| 203 |
"openmmlab/upernet-convnext-small"
|
| 204 |
)
|
| 205 |
|
| 206 |
-
image =
|
| 207 |
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
| 208 |
|
| 209 |
with torch.no_grad():
|
|
|
|
| 203 |
"openmmlab/upernet-convnext-small"
|
| 204 |
)
|
| 205 |
|
| 206 |
+
image = image_path["image"].convert("RGB").resize((512, 512))
|
| 207 |
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
| 208 |
|
| 209 |
with torch.no_grad():
|
diffusion_webui/helpers.py
CHANGED
|
@@ -7,8 +7,26 @@ from diffusion_webui.diffusion_models.controlnet.controlnet_depth import (
|
|
| 7 |
from diffusion_webui.diffusion_models.controlnet.controlnet_hed import (
|
| 8 |
StableDiffusionControlNetHEDGenerator,
|
| 9 |
)
|
| 10 |
-
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
)
|
| 13 |
from diffusion_webui.diffusion_models.controlnet.controlnet_mlsd import (
|
| 14 |
StableDiffusionControlNetMLSDGenerator,
|
|
|
|
| 7 |
from diffusion_webui.diffusion_models.controlnet.controlnet_hed import (
|
| 8 |
StableDiffusionControlNetHEDGenerator,
|
| 9 |
)
|
| 10 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.controlnet_inpaint_canny import (
|
| 11 |
+
StableDiffusionControlNetInpaintCannyGenerator,
|
| 12 |
+
)
|
| 13 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.controlnet_inpaint_depth import (
|
| 14 |
+
StableDiffusionControlInpaintNetDepthGenerator,
|
| 15 |
+
)
|
| 16 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.controlnet_inpaint_hed import (
|
| 17 |
+
StableDiffusionControlNetInpaintHedGenerator,
|
| 18 |
+
)
|
| 19 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.controlnet_inpaint_mlsd import (
|
| 20 |
+
StableDiffusionControlNetInpaintMlsdGenerator,
|
| 21 |
+
)
|
| 22 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.controlnet_inpaint_pose import (
|
| 23 |
+
StableDiffusionControlNetInpaintPoseGenerator,
|
| 24 |
+
)
|
| 25 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.controlnet_inpaint_scribble import (
|
| 26 |
+
StableDiffusionControlNetInpaintScribbleGenerator,
|
| 27 |
+
)
|
| 28 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.controlnet_inpaint_seg import (
|
| 29 |
+
StableDiffusionControlNetInpaintSegGenerator,
|
| 30 |
)
|
| 31 |
from diffusion_webui.diffusion_models.controlnet.controlnet_mlsd import (
|
| 32 |
StableDiffusionControlNetMLSDGenerator,
|
diffusion_webui/utils/model_list.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
stable_model_list = [
|
| 2 |
"runwayml/stable-diffusion-v1-5",
|
| 3 |
"stabilityai/stable-diffusion-2-1",
|
| 4 |
-
"prompthero/openjourney"
|
| 5 |
]
|
| 6 |
|
| 7 |
controlnet_canny_model_list = [
|
|
@@ -32,3 +32,11 @@ stable_inpiant_model_list = [
|
|
| 32 |
"stabilityai/stable-diffusion-2-inpainting",
|
| 33 |
"runwayml/stable-diffusion-inpainting",
|
| 34 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
stable_model_list = [
|
| 2 |
"runwayml/stable-diffusion-v1-5",
|
| 3 |
"stabilityai/stable-diffusion-2-1",
|
| 4 |
+
"prompthero/openjourney-v4",
|
| 5 |
]
|
| 6 |
|
| 7 |
controlnet_canny_model_list = [
|
|
|
|
| 32 |
"stabilityai/stable-diffusion-2-inpainting",
|
| 33 |
"runwayml/stable-diffusion-inpainting",
|
| 34 |
]
|
| 35 |
+
|
| 36 |
+
controlnet_mlsd_model_list = [
|
| 37 |
+
"lllyasviel/sd-controlnet-mlsd",
|
| 38 |
+
]
|
| 39 |
+
|
| 40 |
+
controlnet_seg_model_list = [
|
| 41 |
+
"lllyasviel/sd-controlnet-seg",
|
| 42 |
+
]
|