|
from diffusers import ( StableDiffusionControlNetPipeline, |
|
ControlNetModel, UniPCMultistepScheduler) |
|
|
|
from controlnet_aux import OpenposeDetector |
|
|
|
from PIL import Image |
|
import gradio as gr |
|
import torch |
|
|
|
stable_model_list = [ |
|
"runwayml/stable-diffusion-v1-5", |
|
"stabilityai/stable-diffusion-2", |
|
"stabilityai/stable-diffusion-2-base", |
|
"stabilityai/stable-diffusion-2-1", |
|
"stabilityai/stable-diffusion-2-1-base" |
|
] |
|
|
|
stable_inpiant_model_list = [ |
|
"stabilityai/stable-diffusion-2-inpainting", |
|
"runwayml/stable-diffusion-inpainting" |
|
] |
|
|
|
stable_prompt_list = [ |
|
"a photo of a man.", |
|
"a photo of a girl." |
|
] |
|
|
|
stable_negative_prompt_list = [ |
|
"bad, ugly", |
|
"deformed" |
|
] |
|
|
|
|
|
def controlnet_pose(image_path:str): |
|
openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet') |
|
|
|
image = Image.open(image_path) |
|
image = openpose(image) |
|
|
|
controlnet = ControlNetModel.from_pretrained( |
|
"fusing/stable-diffusion-v1-5-controlnet-openpose", |
|
torch_dtype=torch.float16 |
|
) |
|
|
|
return controlnet, image |
|
|
|
def stable_diffusion_controlnet_pose( |
|
image_path:str, |
|
model_path:str, |
|
prompt:str, |
|
negative_prompt:str, |
|
guidance_scale:int, |
|
num_inference_step:int, |
|
): |
|
|
|
controlnet, image = controlnet_pose(image_path=image_path) |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
pretrained_model_name_or_path=model_path, |
|
controlnet=controlnet, |
|
safety_checker=None, |
|
torch_dtype=torch.float16 |
|
) |
|
|
|
pipe.to("cuda") |
|
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) |
|
pipe.enable_xformers_memory_efficient_attention() |
|
|
|
output = pipe( |
|
prompt = prompt, |
|
image = image, |
|
negative_prompt = negative_prompt, |
|
num_inference_steps = num_inference_step, |
|
guidance_scale = guidance_scale, |
|
).images |
|
|
|
return output[0] |
|
|
|
|
|
def stable_diffusion_controlnet_pose_app(): |
|
with gr.Tab('Pose'): |
|
controlnet_pose_image_file = gr.Image( |
|
type='filepath', |
|
label='Image' |
|
) |
|
|
|
controlnet_pose_model_id = gr.Dropdown( |
|
choices=stable_model_list, |
|
value=stable_model_list[0], |
|
label='Stable Model Id' |
|
) |
|
|
|
controlnet_pose_prompt = gr.Textbox( |
|
lines=1, |
|
value=stable_prompt_list[0], |
|
label='Prompt' |
|
) |
|
|
|
controlnet_pose_negative_prompt = gr.Textbox( |
|
lines=1, |
|
value=stable_negative_prompt_list[0], |
|
label='Negative Prompt' |
|
) |
|
|
|
with gr.Accordion("Advanced Options", open=False): |
|
controlnet_pose_guidance_scale = gr.Slider( |
|
minimum=0.1, |
|
maximum=15, |
|
step=0.1, |
|
value=7.5, |
|
label='Guidance Scale' |
|
) |
|
|
|
controlnet_pose_num_inference_step = gr.Slider( |
|
minimum=1, |
|
maximum=100, |
|
step=1, |
|
value=50, |
|
label='Num Inference Step' |
|
) |
|
|
|
controlnet_pose_predict = gr.Button(value='Generator') |
|
|
|
variables = { |
|
'image_path': controlnet_pose_image_file, |
|
'model_path': controlnet_pose_model_id, |
|
'prompt': controlnet_pose_prompt, |
|
'negative_prompt': controlnet_pose_negative_prompt, |
|
'guidance_scale': controlnet_pose_guidance_scale, |
|
'num_inference_step': controlnet_pose_num_inference_step, |
|
'predict': controlnet_pose_predict |
|
} |
|
|
|
return variables |
|
|