|
import torch |
|
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline |
|
import gradio as gr |
|
|
|
torch._dynamo.config.suppress_errors = True |
|
os.environ['TOKENIZERS_PARALLELISM'] = 'false' |
|
|
|
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16) |
|
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=torch.bfloat16) |
|
|
|
prior.prior = torch.compile(prior.prior, mode="reduce-overhead", fullgraph=True) |
|
decoder.decoder = torch.compile(decoder.decoder, mode="max-autotune", fullgraph=True) |
|
|
|
prior.to("cuda") |
|
decoder.to("cuda") |
|
|
|
def generate_images( |
|
prompt="a photo of a girl", |
|
negative_prompt="bad,ugly,deformed", |
|
height=1024, |
|
width=1024, |
|
guidance_scale=4.0, |
|
num_images_per_prompt=1, |
|
prior_inference_steps=20, |
|
decoder_inference_steps=10 |
|
): |
|
""" |
|
Generates images based on a given prompt using Stable Diffusion models on CUDA device. |
|
Parameters: |
|
- prompt (str): The prompt to generate images for. |
|
- negative_prompt (str): The negative prompt to guide image generation away from. |
|
- height (int): The height of the generated images. |
|
- width (int): The width of the generated images. |
|
- guidance_scale (float): The scale of guidance for the image generation. |
|
- prior_inference_steps (int): The number of inference steps for the prior model. |
|
- decoder_inference_steps (int): The number of inference steps for the decoder model. |
|
Returns: |
|
- List[PIL.Image]: A list of generated PIL Image objects. |
|
""" |
|
|
|
|
|
prior_output = prior( |
|
prompt=prompt, |
|
height=height, |
|
width=width, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
num_images_per_prompt=num_images_per_prompt, |
|
num_inference_steps=prior_inference_steps |
|
) |
|
|
|
|
|
decoder_output = decoder( |
|
image_embeddings=prior_output.image_embeddings.half(), |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=0.0, |
|
output_type="pil", |
|
num_inference_steps=decoder_inference_steps |
|
).images |
|
|
|
return decoder_output |
|
|
|
|
|
def web_demo(): |
|
with gr.Blocks(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
text2image_prompt = gr.Textbox( |
|
lines=1, |
|
placeholder="Prompt", |
|
show_label=False, |
|
) |
|
|
|
text2image_negative_prompt = gr.Textbox( |
|
lines=1, |
|
placeholder="Negative Prompt", |
|
show_label=False, |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
text2image_num_images_per_prompt = gr.Slider( |
|
minimum=1, |
|
maximum=4, |
|
step=1, |
|
value=1, |
|
label="Number Image", |
|
) |
|
|
|
text2image_height = gr.Slider( |
|
minimum=128, |
|
maximum=1280, |
|
step=32, |
|
value=1024, |
|
label="Image Height", |
|
) |
|
|
|
text2image_width = gr.Slider( |
|
minimum=128, |
|
maximum=1280, |
|
step=32, |
|
value=1024, |
|
label="Image Width", |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
text2image_guidance_scale = gr.Slider( |
|
minimum=0.1, |
|
maximum=15, |
|
step=0.1, |
|
value=4.0, |
|
label="Guidance Scale", |
|
) |
|
text2image_prior_inference_step = gr.Slider( |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=20, |
|
label="Prior Inference Step", |
|
) |
|
|
|
text2image_decoder_inference_step = gr.Slider( |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=10, |
|
label="Decoder Inference Step", |
|
) |
|
text2image_predict = gr.Button(value="Generate Image") |
|
|
|
with gr.Column(): |
|
output_image = gr.Gallery( |
|
label="Generated images", |
|
show_label=False, |
|
elem_id="gallery", |
|
) |
|
|
|
text2image_predict.click( |
|
fn=generate_images, |
|
inputs=[ |
|
text2image_prompt, |
|
text2image_negative_prompt, |
|
text2image_height, |
|
text2image_width, |
|
text2image_guidance_scale, |
|
text2image_num_images_per_prompt, |
|
text2image_prior_inference_step, |
|
text2image_decoder_inference_step |
|
], |
|
outputs=output_image, |
|
) |