|
from diffusers import DiffusionPipeline, DDIMScheduler |
|
from PIL import Image |
|
import imageio |
|
import torch |
|
|
|
import gradio as gr |
|
|
|
stable_model_list = [ |
|
"runwayml/stable-diffusion-v1-5", |
|
"stabilityai/stable-diffusion-2", |
|
"stabilityai/stable-diffusion-2-base", |
|
"stabilityai/stable-diffusion-2-1", |
|
"stabilityai/stable-diffusion-2-1-base" |
|
] |
|
|
|
stable_inpiant_model_list = [ |
|
"stabilityai/stable-diffusion-2-inpainting", |
|
"runwayml/stable-diffusion-inpainting" |
|
] |
|
|
|
stable_prompt_list = [ |
|
"a photo of a man.", |
|
"a photo of a girl." |
|
] |
|
|
|
stable_negative_prompt_list = [ |
|
"bad, ugly", |
|
"deformed" |
|
] |
|
|
|
|
|
def resize(height,img): |
|
baseheight = height |
|
img = Image.open(img) |
|
hpercent = (baseheight/float(img.size[1])) |
|
wsize = int((float(img.size[0])*float(hpercent))) |
|
img = img.resize((wsize,baseheight), Image.Resampling.LANCZOS) |
|
return img |
|
|
|
def img_preprocces(source_img, prompt, negative_prompt): |
|
imageio.imwrite("data.png", source_img["image"]) |
|
imageio.imwrite("data_mask.png", source_img["mask"]) |
|
src = resize(512, "data.png") |
|
src.save("src.png") |
|
mask = resize(512, "data_mask.png") |
|
mask.save("mask.png") |
|
return src, mask |
|
|
|
def stable_diffusion_inpaint( |
|
image_path:str, |
|
model_path:str, |
|
prompt:str, |
|
negative_prompt:str, |
|
guidance_scale:int, |
|
num_inference_step:int, |
|
): |
|
|
|
image, mask_image = img_preprocces(image_path, prompt, negative_prompt) |
|
pipe = DiffusionPipeline.from_pretrained( |
|
model_path, |
|
revision="fp16", |
|
torch_dtype=torch.float16, |
|
) |
|
pipe.to('cuda') |
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
pipe.enable_xformers_memory_efficient_attention() |
|
|
|
output = pipe( |
|
prompt = prompt, |
|
image = image, |
|
mask_image=mask_image, |
|
negative_prompt = negative_prompt, |
|
num_inference_steps = num_inference_step, |
|
guidance_scale = guidance_scale, |
|
).images |
|
|
|
return output[0] |
|
|
|
|
|
def stable_diffusion_inpaint_app(): |
|
with gr.Tab('Inpaint'): |
|
inpaint_image_file = gr.Image( |
|
source="upload", |
|
type="numpy", |
|
tool="sketch", |
|
elem_id="source_container" |
|
) |
|
|
|
inpaint_model_id = gr.Dropdown( |
|
choices=stable_inpiant_model_list, |
|
value=stable_inpiant_model_list[0], |
|
label='Inpaint Model Id' |
|
) |
|
|
|
inpaint_prompt = gr.Textbox( |
|
lines=1, |
|
value=stable_prompt_list[0], |
|
label='Prompt' |
|
) |
|
|
|
inpaint_negative_prompt = gr.Textbox( |
|
lines=1, |
|
value=stable_negative_prompt_list[0], |
|
label='Negative Prompt' |
|
) |
|
|
|
with gr.Accordion("Advanced Options", open=False): |
|
inpaint_guidance_scale = gr.Slider( |
|
minimum=0.1, |
|
maximum=15, |
|
step=0.1, |
|
value=7.5, |
|
label='Guidance Scale' |
|
) |
|
|
|
inpaint_num_inference_step = gr.Slider( |
|
minimum=1, |
|
maximum=100, |
|
step=1, |
|
value=50, |
|
label='Num Inference Step' |
|
) |
|
|
|
inpaint_predict = gr.Button(value='Generator') |
|
|
|
variables = { |
|
"image_path": inpaint_image_file, |
|
"model_path": inpaint_model_id, |
|
"prompt": inpaint_prompt, |
|
"negative_prompt": inpaint_negative_prompt, |
|
"guidance_scale": inpaint_guidance_scale, |
|
"num_inference_step": inpaint_num_inference_step, |
|
"predict": inpaint_predict |
|
} |
|
|
|
return variables |
|
|