File size: 28,407 Bytes
631fbda
 
 
 
 
66eba7b
3f10ec6
631fbda
 
30f4bb4
 
01e6032
 
 
 
 
 
 
 
 
3f10ec6
eef56bc
 
106f5b9
4c2791d
4af6b14
631fbda
10384e0
15b10ef
66eba7b
2b882cc
15b10ef
2b882cc
66eba7b
 
 
 
 
10384e0
 
66eba7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b882cc
10384e0
2b882cc
 
 
 
631fbda
4af6b14
 
 
631fbda
 
3f10ec6
631fbda
268d9a1
 
 
 
 
 
 
 
 
 
631fbda
 
 
3f10ec6
 
 
 
 
631fbda
335d363
3f10ec6
 
 
 
 
 
 
 
 
 
 
 
f715d34
631fbda
335d363
15b10ef
 
335d363
10384e0
 
 
 
15b10ef
 
 
335d363
10384e0
 
 
 
15b10ef
10384e0
 
15b10ef
10384e0
 
 
15b10ef
335d363
10384e0
 
 
 
 
 
335d363
10384e0
 
 
 
15b10ef
f715d34
335d363
10384e0
 
 
 
335d363
 
 
 
 
 
 
3f10ec6
335d363
10384e0
 
335d363
10384e0
631fbda
 
106f5b9
 
 
 
 
 
 
631fbda
 
 
10384e0
 
 
 
 
 
 
631fbda
106f5b9
 
 
 
 
 
 
 
268d9a1
 
 
 
 
 
 
 
106f5b9
268d9a1
 
 
 
 
631fbda
10384e0
 
 
631fbda
10384e0
 
631fbda
 
 
 
acb363b
27e4b8f
10384e0
 
acb363b
 
 
 
 
 
 
 
 
8e6b559
 
acb363b
 
3f10ec6
 
631fbda
10384e0
631fbda
 
10384e0
 
 
631fbda
4af6b14
8e6b559
 
 
 
 
631fbda
 
 
10384e0
 
 
631fbda
4af6b14
8e6b559
 
 
 
 
631fbda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335d363
631fbda
 
4af6b14
335d363
631fbda
 
 
 
84f107c
 
 
 
 
 
 
 
 
 
631fbda
 
84f107c
631fbda
 
84f107c
631fbda
 
 
84f107c
631fbda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84f107c
 
 
 
 
 
 
 
 
 
631fbda
 
 
 
84f107c
 
 
 
 
631fbda
 
 
 
 
 
 
 
 
 
 
 
 
01e6032
631fbda
 
 
3f10ec6
 
631fbda
 
 
 
 
 
 
 
4af6b14
631fbda
 
 
4af6b14
 
631fbda
 
 
 
3f10ec6
631fbda
 
 
 
3f10ec6
631fbda
4af6b14
 
 
 
3f10ec6
4af6b14
27e4b8f
4af6b14
 
 
27e4b8f
 
 
4af6b14
 
 
 
 
 
 
 
 
 
 
 
 
30f4bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
631fbda
 
 
 
 
 
5d3a365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
631fbda
3f10ec6
5d3a365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
631fbda
acb363b
 
335d363
 
 
 
 
 
 
 
a2770ee
335d363
a2770ee
 
335d363
 
acb363b
 
631fbda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f10ec6
 
631fbda
 
 
4af6b14
631fbda
 
8e6b559
 
 
 
 
 
631fbda
 
 
 
 
4af6b14
 
 
631fbda
 
01e6032
 
335d363
 
 
 
 
 
 
a2770ee
335d363
a2770ee
 
335d363
4ceb2fd
 
335d363
4c2791d
 
 
 
 
 
 
 
 
30f4bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2770ee
30f4bb4
 
 
 
 
631fbda
 
 
 
8b0b34b
 
 
 
 
631fbda
 
 
 
 
01e6032
335d363
631fbda
 
 
 
 
01e6032
335d363
4af6b14
 
 
 
 
 
631fbda
 
 
 
 
4af6b14
335d363
631fbda
 
335d363
631fbda
01e6032
631fbda
 
01e6032
 
3f10ec6
 
268d9a1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
import gradio as gr
from functools import lru_cache
import random
import requests
import logging
import re
import config
import plotly.graph_objects as go
from typing import Dict
import json
import os
from leaderboard import (
    get_current_leaderboard,
    update_leaderboard, 
    start_backup_thread, 
    get_leaderboard, 
    get_elo_leaderboard,
    ensure_elo_ratings_initialized
)
import sys
import openai
import threading
import time
from collections import Counter
from release_notes import get_release_notes_html


# Update the logging format to redact URLs
logging.basicConfig(
    level=logging.WARNING,  # Only show warnings and errors
    format='%(asctime)s - %(levelname)s - %(message)s'
)

# Suppress verbose HTTP request logging
logging.getLogger("urllib3").setLevel(logging.CRITICAL)
logging.getLogger("httpx").setLevel(logging.CRITICAL)
logging.getLogger("openai").setLevel(logging.CRITICAL)

class RedactURLsFilter(logging.Filter):
    def filter(self, record):
        # Redact all URLs using regex pattern
        url_pattern = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
        record.msg = re.sub(url_pattern, '[REDACTED_URL]', str(record.msg))
        
        # Remove HTTP status codes
        record.msg = re.sub(r'HTTP/\d\.\d \d+ \w+', '', record.msg)
        
        # Remove sensitive API references
        record.msg = record.msg.replace(config.API_URL, '[API]')
        record.msg = record.msg.replace(config.NEXTCLOUD_URL, '[CLOUD]')
        
        # Clean up residual artifacts
        record.msg = re.sub(r'\s+', ' ', record.msg).strip()
        record.msg = re.sub(r'("?) \1', '', record.msg)  # Remove empty quotes
        
        return True

# Apply the filter to all handlers
logger = logging.getLogger(__name__)
for handler in logging.root.handlers:
    handler.addFilter(RedactURLsFilter())

# Start the backup thread
start_backup_thread()

# Function to get available models (using predefined list)
def get_available_models():
    return [model[0] for model in config.get_approved_models()]

# Function to get recent opponents for a model
recent_opponents = {}

def update_recent_opponents(model_a, model_b):
    recent_opponents.setdefault(model_a, []).append(model_b)
    recent_opponents.setdefault(model_b, []).append(model_a)
    # Limit history to last 5 opponents
    recent_opponents[model_a] = recent_opponents[model_a][-5:]
    recent_opponents[model_b] = recent_opponents[model_b][-5:]

# Function to call Ollama API with caching
@lru_cache(maxsize=100)
def call_ollama_api(model, prompt):
    client = openai.OpenAI(
        api_key=config.API_KEY,
        base_url=config.API_URL
    )
    
    try:
        logger.info(f"Starting API call for model: {model}")
        response = client.chat.completions.create(
            model=model,
            messages=[
                {
                    "role": "system",
                    "content": "You are a helpful assistant. At no point should you reveal your name, identity or team affiliation to the user, especially if asked directly!"
                },
                {
                    "role": "user",
                    "content": prompt
                }
            ],
            timeout=180
        )
        logger.info(f"Received response for model: {model}")
        
        if not response or not response.choices:
            logger.error(f"Empty response received for model: {model}")
            return [
                {"role": "user", "content": prompt},
                {"role": "assistant", "content": "Error: Empty response from the model"}
            ]
            
        content = response.choices[0].message.content
        if not content:
            logger.error(f"Empty content received for model: {model}")
            return [
                {"role": "user", "content": prompt},
                {"role": "assistant", "content": "Error: Empty content from the model"}
            ]
        
        # Extract thinking part and main content using regex
        thinking_match = re.search(r'<think>(.*?)</think>', content, flags=re.DOTALL)
        
        if thinking_match:
            thinking_content = thinking_match.group(1).strip()
            main_content = re.sub(r'<think>.*?</think>', '', content, flags=re.DOTALL).strip()
            
            logger.info(f"Found thinking content for model: {model}")
            return [
                {"role": "user", "content": prompt},
                {"role": "assistant", "content": f"{main_content}\n\n<details><summary>πŸ€” View thinking process</summary>\n\n{thinking_content}\n\n</details>"}
            ]
        
        # If no thinking tags, return normal content
        logger.info(f"No thinking tags found for model: {model}")
        return [
            {"role": "user", "content": prompt},
            {"role": "assistant", "content": content.strip()}
        ]
        
    except requests.exceptions.Timeout:
        logger.error(f"Timeout error after 180 seconds for model: {model}")
        return [
            {"role": "user", "content": prompt},
            {"role": "assistant", "content": "Error: Model response timed out after 180 seconds"}
        ]
    except openai.BadRequestError as e:
        error_msg = str(e)
        logger.error(f"Bad request error for model: {model}. Error: {error_msg}")
        return [
            {"role": "user", "content": prompt},
            {"role": "assistant", "content": "Error: Unable to get response from the model"}
        ]
    except Exception as e:
        logger.error(f"Error calling Ollama API for model: {model}. Error: {str(e)}", exc_info=True)
        return [
            {"role": "user", "content": prompt},
            {"role": "assistant", "content": "Error: Unable to get response from the model"}
        ]

# Generate responses using two randomly selected models
def get_battle_counts():
    leaderboard = get_current_leaderboard()
    battle_counts = Counter()
    for model, data in leaderboard.items():
        battle_counts[model] = data['wins'] + data['losses']
    return battle_counts

def generate_responses(prompt):
    available_models = get_available_models()
    if len(available_models) < 2:
        return [
            {"role": "user", "content": prompt},
            {"role": "assistant", "content": "Error: Not enough models available"}
        ], [
            {"role": "user", "content": prompt},
            {"role": "assistant", "content": "Error: Not enough models available"}
        ], None, None
    
    battle_counts = get_battle_counts()
    
    # Sort models by battle count (ascending)
    sorted_models = sorted(available_models, key=lambda m: battle_counts.get(m, 0))
    
    # Select the first model (least battles)
    model_a = sorted_models[0]
    
    # Filter out recent opponents for model_a
    potential_opponents = [m for m in sorted_models[1:] if m not in recent_opponents.get(model_a, [])]
    
    # If no potential opponents left, reset recent opponents for model_a
    if not potential_opponents:
        recent_opponents[model_a] = []
        potential_opponents = sorted_models[1:]
    
    # For the second model, use weighted random selection
    weights = [1 / (battle_counts.get(m, 1) + 1) for m in potential_opponents]
    model_b = random.choices(potential_opponents, weights=weights, k=1)[0]
    
    # Update recent opponents
    update_recent_opponents(model_a, model_b)
    
    # Get responses from both models
    response_a = call_ollama_api(model_a, prompt)
    response_b = call_ollama_api(model_b, prompt)
    
    # Return responses directly (already formatted correctly)
    return response_a, response_b, model_a, model_b

def battle_arena(prompt):
    response_a, response_b, model_a, model_b = generate_responses(prompt)
    
    # Check for API errors in responses
    if any("Error: Unable to get response from the model" in msg["content"]
           for msg in response_a + response_b 
           if msg["role"] == "assistant"):
        return (
            [], [], None, None,
            gr.update(value=[]),
            gr.update(value=[]),
            gr.update(interactive=False, value="Voting Disabled - API Error"),
            gr.update(interactive=False, value="Voting Disabled - API Error"),
            gr.update(interactive=False, visible=False),
            prompt,
            0,
            gr.update(visible=False),
            gr.update(value="Error: Unable to get response from the model", visible=True)
        )
    
    nickname_a = random.choice(config.model_nicknames)
    nickname_b = random.choice(config.model_nicknames)
    
    # The responses are already in the correct format, no need to reformat
    if random.choice([True, False]):
        return (
            response_a, response_b, model_a, model_b,
            gr.update(label=nickname_a, value=response_a),
            gr.update(label=nickname_b, value=response_b),
            gr.update(interactive=True, value=f"Vote for {nickname_a}"),
            gr.update(interactive=True, value=f"Vote for {nickname_b}"),
            gr.update(interactive=True, visible=True),
            prompt,
            0,
            gr.update(visible=False),
            gr.update(value="Ready for your vote! πŸ—³οΈ", visible=True)
        )
    else:
        return (
            response_b, response_a, model_b, model_a,
            gr.update(label=nickname_a, value=response_b),
            gr.update(label=nickname_b, value=response_a),
            gr.update(interactive=True, value=f"Vote for {nickname_a}"),
            gr.update(interactive=True, value=f"Vote for {nickname_b}"),
            gr.update(interactive=True, visible=True),
            prompt,
            0,
            gr.update(visible=False),
            gr.update(value="Ready for your vote! πŸ—³οΈ", visible=True)
        )

def record_vote(prompt, left_response, right_response, left_model, right_model, choice):
    # Check if outputs are generated
    if not left_response or not right_response or not left_model or not right_model:
        return (
            "Please generate responses before voting.", 
            gr.update(), 
            gr.update(interactive=False), 
            gr.update(interactive=False), 
            gr.update(visible=False), 
            gr.update()
        )
    
    winner = left_model if choice == "Left is better" else right_model
    loser = right_model if choice == "Left is better" else left_model
    
    # Update the leaderboard
    battle_results = update_leaderboard(winner, loser)
    
    result_message = f"""
πŸŽ‰ Vote recorded! You're awesome! 🌟
πŸ”΅ In the left corner: {get_human_readable_name(left_model)}
πŸ”΄ In the right corner: {get_human_readable_name(right_model)}
πŸ† And the champion you picked is... {get_human_readable_name(winner)}! πŸ₯‡
    """
    
    return (
        gr.update(value=result_message, visible=True),  # Show result as Markdown
        get_leaderboard(),                              # Update leaderboard
        get_elo_leaderboard(),                         # Update ELO leaderboard
        gr.update(interactive=False),                   # Disable left vote button
        gr.update(interactive=False),                   # Disable right vote button
        gr.update(interactive=False),                   # Disable tie button
        gr.update(visible=True)                         # Show model names
    )

def get_leaderboard_chart():
    battle_results = get_current_leaderboard()
    
    # Calculate scores and sort results
    for model, results in battle_results.items():
        total_battles = results["wins"] + results["losses"]
        if total_battles > 0:
            win_rate = results["wins"] / total_battles
            results["score"] = win_rate * (1 - 1 / (total_battles + 1))
        else:
            results["score"] = 0
    
    sorted_results = sorted(
        battle_results.items(), 
        key=lambda x: (x[1]["score"], x[1]["wins"] + x[1]["losses"]), 
        reverse=True
    )

    models = [get_human_readable_name(model) for model, _ in sorted_results]
    wins = [results["wins"] for _, results in sorted_results]
    losses = [results["losses"] for _, results in sorted_results]
    scores = [results["score"] for _, results in sorted_results]

    fig = go.Figure()

    # Stacked Bar chart for Wins and Losses
    fig.add_trace(go.Bar(
        x=models,
        y=wins,
        name='Wins',
        marker_color='#22577a'
    ))
    fig.add_trace(go.Bar(
        x=models,
        y=losses,
        name='Losses',
        marker_color='#38a3a5'
    ))

    # Line chart for Scores
    fig.add_trace(go.Scatter(
        x=models,
        y=scores,
        name='Score',
        yaxis='y2',
        line=dict(color='#ff7f0e', width=2)
    ))

    # Update layout for full-width, increased height, and secondary y-axis
    fig.update_layout(
        title='Model Performance',
        xaxis_title='Models',
        yaxis_title='Number of Battles',
        yaxis2=dict(
            title='Score',
            overlaying='y',
            side='right'
        ),
        barmode='stack',
        height=800,
        width=1450,
        autosize=True,
        legend=dict(
            orientation='h',
            yanchor='bottom',
            y=1.02,
            xanchor='right',
            x=1
        )
    )

    chart_data = fig.to_json()
    return fig

def new_battle():
    nickname_a = random.choice(config.model_nicknames)
    nickname_b = random.choice(config.model_nicknames)
    return (
        "", # Reset prompt_input
        gr.update(value=[], label=nickname_a),  # Reset left Chatbot
        gr.update(value=[], label=nickname_b),  # Reset right Chatbot
        None,
        None,
        gr.update(interactive=False, value=f"Vote for {nickname_a}"),
        gr.update(interactive=False, value=f"Vote for {nickname_b}"),
        gr.update(interactive=False, visible=False),  # Reset Tie button
        gr.update(value="", visible=False),
        gr.update(),
        gr.update(visible=False),
        gr.update(),
        0  # Reset tie_count
    )

# Add this new function
def get_human_readable_name(model_name: str) -> str:
    model_dict = dict(config.get_approved_models())
    return model_dict.get(model_name, model_name)

# Add this new function to randomly select a prompt
def random_prompt():
    return random.choice(config.example_prompts)

# Modify the continue_conversation function
def continue_conversation(prompt, left_chat, right_chat, left_model, right_model, previous_prompt, tie_count):
    # Check if the prompt is empty or the same as the previous one
    if not prompt or prompt == previous_prompt:
        prompt = random.choice(config.example_prompts)
    
    # Get responses (which are lists of messages)
    left_response = call_ollama_api(left_model, prompt)
    right_response = call_ollama_api(right_model, prompt)
    
    # Append messages from the response lists
    left_chat.extend(left_response)
    right_chat.extend(right_response)
    
    tie_count += 1
    tie_button_state = gr.update(interactive=True) if tie_count < 3 else gr.update(interactive=False, value="Max ties reached. Please vote!")
    
    return (
        gr.update(value=left_chat),
        gr.update(value=right_chat),
        gr.update(value=""),  # Clear the prompt input
        tie_button_state,
        prompt,  # Return the new prompt
        tie_count
    )

def normalize_parameter_size(param_size: str) -> str:
    """Convert parameter size to billions (B) format."""
    try:
        # Remove any spaces and convert to uppercase for consistency
        param_size = param_size.replace(" ", "").upper()
        
        # Extract the number and unit
        if 'M' in param_size:
            # Convert millions to billions
            number = float(param_size.replace('M', '').replace(',', ''))
            return f"{number/1000:.2f}B"
        elif 'B' in param_size:
            # Already in billions, just format consistently
            number = float(param_size.replace('B', '').replace(',', ''))
            return f"{number:.2f}B"
        else:
            # If no unit or unrecognized format, try to convert the raw number
            number = float(param_size.replace(',', ''))
            if number >= 1000000000:
                return f"{number/1000000000:.2f}B"
            elif number >= 1000000:
                return f"{number/1000000000:.2f}B"
            else:
                return f"{number/1000000000:.2f}B"
    except:
        return param_size  # Return original if conversion fails

def load_latest_model_stats():
    """Load model stats from the model_stats.json file."""
    try:
        # Read directly from model_stats.json in root directory
        with open('model_stats.json', 'r') as f:
            stats = json.load(f)
            
        # Convert stats to table format
        table_data = []
        headers = ["Model", "VRAM (GB)", "Size", "Parameters", "Quantization", "Tokens/sec", "Gen Tokens/sec", "Total Tokens", "Response Time (s)"]
        
        for model in stats:
            if not model.get("success", False):  # Skip failed tests
                continue
                
            perf = model.get("performance", {})
            info = model.get("model_info", {})
            
            try:
                # Format numeric values with 2 decimal places
                model_size = float(info.get("size", 0))  # Get raw size
                vram_gb = round(model_size/1024/1024/1024, 2)  # Convert to GB
                tokens_per_sec = round(float(perf.get("tokens_per_second", 0)), 2)
                gen_tokens_per_sec = round(float(perf.get("generation_tokens_per_second", 0)), 2)
                total_tokens = perf.get("total_tokens", 0)
                response_time = round(float(perf.get("response_time", 0)), 2)
                
                # Normalize parameter size to billions format
                param_size = normalize_parameter_size(info.get("parameter_size", "Unknown"))
                
                row = [
                    model.get("model_name", "Unknown"),      # String
                    vram_gb,                                 # Number (2 decimals)
                    model_size,                              # Number (bytes)
                    param_size,                              # String (normalized to B)
                    info.get("quantization_level", "Unknown"),  # String
                    tokens_per_sec,                          # Number (2 decimals)
                    gen_tokens_per_sec,                      # Number (2 decimals)
                    total_tokens,                            # Number (integer)
                    response_time                            # Number (2 decimals)
                ]
                table_data.append(row)
            except Exception as row_error:
                logger.warning(f"Skipping model {model.get('model_name', 'Unknown')}: {str(row_error)}")
                continue
            
        if not table_data:
            return None, "No valid model stats found"
            
        # Sort by tokens per second (numerically)
        table_data.sort(key=lambda x: float(x[5]) if isinstance(x[5], (int, float)) else 0, reverse=True)
        
        return headers, table_data
    except Exception as e:
        logger.error(f"Error in load_latest_model_stats: {str(e)}")
        return None, f"Error loading model stats: {str(e)}"

# Initialize Gradio Blocks
with gr.Blocks(css="""
    #dice-button {
        min-height: 90px;
        font-size: 35px;
    }
    .sponsor-button {
        background-color: #30363D;
        color: white;
        border: none;
        padding: 10px 20px;
        border-radius: 6px;
        cursor: pointer;
        display: inline-flex;
        align-items: center;
        gap: 8px;
        font-weight: bold;
    }
    .sponsor-button:hover {
        background-color: #2D333B;
    }
""") as demo:
    gr.Markdown(config.ARENA_NAME)
    
    # Main description with sponsor button
    with gr.Row():
        with gr.Column(scale=8):
            gr.Markdown("""
                **Step right up to the arena where frugal meets fabulous in the world of AI!**
                Watch as our compact contenders (maxing out at 14B parameters) duke it out in a battle of wits and words.
                
                What started as a simple experiment has grown into a popular platform for evaluating compact language models.
                As the arena continues to expand with more models, features, and battles, it requires computational resources to maintain and improve.
                If you find this project valuable and would like to support its development, consider sponsoring:
            """)
        with gr.Column(scale=2):
            gr.Button(
                "Sponsor on GitHub",
                link="https://github.com/sponsors/k-mktr",
                elem_classes="sponsor-button"
            )
    
    # Instructions in an accordion
    with gr.Accordion("πŸ“– How to Use", open=False):
        gr.Markdown("""
            1. To start the battle, go to the 'Battle Arena' tab.
            2. Type your prompt into the text box. Alternatively, click the "🎲" button to receive a random prompt.
            3. Click the "Generate Responses" button to view the models' responses.
            4. Cast your vote for the model that provided the better response. In the event of a Tie, enter a new prompt before continuing the battle.
            5. Check out the Leaderboard to see how models rank against each other.
            
            More info: [README.md](https://huggingface.co/spaces/k-mktr/gpu-poor-llm-arena/blob/main/README.md)
        """)
    
    # Leaderboard Tab (now first)
    with gr.Tab("Leaderboard"):
        gr.Markdown("""
        ### Main Leaderboard
        This leaderboard uses a scoring system that balances win rate and total battles. The score is calculated using the formula:
        **Score = Win Rate * (1 - 1 / (Total Battles + 1))**
        
        This formula rewards models with higher win rates and more battles. As the number of battles increases, the score approaches the win rate.
        """)
        leaderboard = gr.Dataframe(
            headers=["#", "Model", "Score", "Wins", "Losses", "Total Battles", "Win Rate"],
            row_count=10,
            col_count=7,
            interactive=True,
            label="Leaderboard"
        )
    
    # Battle Arena Tab (now second)
    with gr.Tab("Battle Arena"):
        with gr.Row():
            prompt_input = gr.Textbox(
                label="Enter your prompt", 
                placeholder="Type your prompt here...",
                scale=20
            )
            random_prompt_btn = gr.Button("🎲", scale=1, elem_id="dice-button")
        
        gr.Markdown("<br>")
        
        # Add the random prompt button functionality
        random_prompt_btn.click(
            random_prompt,
            outputs=prompt_input
        )
        
        submit_btn = gr.Button("Generate Responses", variant="primary")
        
        with gr.Row():
            left_output = gr.Chatbot(label=random.choice(config.model_nicknames), type="messages")
            right_output = gr.Chatbot(label=random.choice(config.model_nicknames), type="messages")
        
        with gr.Row():
            left_vote_btn = gr.Button(f"Vote for {left_output.label}", interactive=False)
            tie_btn = gr.Button("Tie πŸ™ˆ Continue with a new prompt", interactive=False, visible=False)
            right_vote_btn = gr.Button(f"Vote for {right_output.label}", interactive=False)
        
        result = gr.Textbox(
            label="Status", 
            interactive=False, 
            value="Generate responses to start the battle! πŸš€",
            visible=True  # Always visible
        )
        
        with gr.Row(visible=False) as model_names_row:
            left_model = gr.Textbox(label="πŸ”΅ Left Model", interactive=False)
            right_model = gr.Textbox(label="πŸ”΄ Right Model", interactive=False)
        
        previous_prompt = gr.State("")  # Add this line to store the previous prompt
        tie_count = gr.State(0)  # Add this line to keep track of tie count
        
        new_battle_btn = gr.Button("New Battle")
    
    # ELO Leaderboard Tab
    with gr.Tab("ELO Leaderboard"):
        gr.Markdown("""
        ### ELO Rating System
        This leaderboard uses a modified ELO rating system that takes into account both the performance and size of the models.
        Initial ratings are based on model size, with larger models starting at higher ratings.
        The ELO rating is calculated based on wins and losses, with adjustments made based on the relative strengths of opponents.
        """)
        elo_leaderboard = gr.Dataframe(
            headers=["#", "Model", "ELO Rating", "Wins", "Losses", "Total Battles", "Win Rate"],
            row_count=10,
            col_count=7,
            interactive=True,
            label="ELO Leaderboard"
        )
    
    # Latest Updates Tab
    with gr.Tab("Latest Updates"):
        release_notes = gr.HTML(get_release_notes_html())
        refresh_notes_btn = gr.Button("Refresh Updates")
        
        refresh_notes_btn.click(
            get_release_notes_html,
            outputs=[release_notes]
        )
    
    # Model Stats Tab
    with gr.Tab("Model Stats"):
        gr.Markdown("""
        ### Model Performance Statistics
        
        This tab shows detailed performance metrics for each model, tested using a creative writing prompt.
        The tests were performed on an **AMD Radeon RX 7600 XT 16GB GPU**.
        
        For detailed information about the testing methodology, parameters, and hardware setup, please refer to the 
        [README_model_stats.md](https://huggingface.co/spaces/k-mktr/gpu-poor-llm-arena/blob/main/README_model_stats.md).
        
        """)
        
        headers, table_data = load_latest_model_stats()
        if headers:
            model_stats_table = gr.Dataframe(
                headers=headers,
                value=table_data,
                row_count=len(table_data),
                col_count=len(headers),
                interactive=True,
                label="Model Performance Statistics"
            )
        else:
            gr.Markdown(f"⚠️ {table_data}")  # Show error message if loading failed
    
    # Define interactions
    submit_btn.click(
        battle_arena,
        inputs=prompt_input,
        outputs=[
            left_output, right_output, left_model, right_model, 
            left_output, right_output, left_vote_btn, right_vote_btn,
            tie_btn, previous_prompt, tie_count, model_names_row, result
        ]
    )
    
    left_vote_btn.click(
        lambda *args: record_vote(*args, "Left is better"),
        inputs=[prompt_input, left_output, right_output, left_model, right_model],
        outputs=[result, leaderboard, elo_leaderboard, left_vote_btn, 
                 right_vote_btn, tie_btn, model_names_row]
    )
    
    right_vote_btn.click(
        lambda *args: record_vote(*args, "Right is better"),
        inputs=[prompt_input, left_output, right_output, left_model, right_model],
        outputs=[result, leaderboard, elo_leaderboard, left_vote_btn, 
                 right_vote_btn, tie_btn, model_names_row]
    )
    
    tie_btn.click(
        continue_conversation,
        inputs=[prompt_input, left_output, right_output, left_model, right_model, previous_prompt, tie_count],
        outputs=[left_output, right_output, prompt_input, tie_btn, previous_prompt, tie_count]
    )
    
    new_battle_btn.click(
        new_battle,
        outputs=[prompt_input, left_output, right_output, left_model, 
                right_model, left_vote_btn, right_vote_btn, tie_btn,
                result, leaderboard, model_names_row, tie_count]
    )
    
    # Update leaderboard on launch
    demo.load(get_leaderboard, outputs=leaderboard)
    demo.load(get_elo_leaderboard, outputs=elo_leaderboard)

if __name__ == "__main__":
    # Initialize ELO ratings before launching the app
    ensure_elo_ratings_initialized()
    # Start the model refresh thread
    config.start_model_refresh_thread()
    demo.launch(show_api=False)