Spaces:
Running
Running
File size: 28,407 Bytes
631fbda 66eba7b 3f10ec6 631fbda 30f4bb4 01e6032 3f10ec6 eef56bc 106f5b9 4c2791d 4af6b14 631fbda 10384e0 15b10ef 66eba7b 2b882cc 15b10ef 2b882cc 66eba7b 10384e0 66eba7b 2b882cc 10384e0 2b882cc 631fbda 4af6b14 631fbda 3f10ec6 631fbda 268d9a1 631fbda 3f10ec6 631fbda 335d363 3f10ec6 f715d34 631fbda 335d363 15b10ef 335d363 10384e0 15b10ef 335d363 10384e0 15b10ef 10384e0 15b10ef 10384e0 15b10ef 335d363 10384e0 335d363 10384e0 15b10ef f715d34 335d363 10384e0 335d363 3f10ec6 335d363 10384e0 335d363 10384e0 631fbda 106f5b9 631fbda 10384e0 631fbda 106f5b9 268d9a1 106f5b9 268d9a1 631fbda 10384e0 631fbda 10384e0 631fbda acb363b 27e4b8f 10384e0 acb363b 8e6b559 acb363b 3f10ec6 631fbda 10384e0 631fbda 10384e0 631fbda 4af6b14 8e6b559 631fbda 10384e0 631fbda 4af6b14 8e6b559 631fbda 335d363 631fbda 4af6b14 335d363 631fbda 84f107c 631fbda 84f107c 631fbda 84f107c 631fbda 84f107c 631fbda 84f107c 631fbda 84f107c 631fbda 01e6032 631fbda 3f10ec6 631fbda 4af6b14 631fbda 4af6b14 631fbda 3f10ec6 631fbda 3f10ec6 631fbda 4af6b14 3f10ec6 4af6b14 27e4b8f 4af6b14 27e4b8f 4af6b14 30f4bb4 631fbda 5d3a365 631fbda 3f10ec6 5d3a365 631fbda acb363b 335d363 a2770ee 335d363 a2770ee 335d363 acb363b 631fbda 3f10ec6 631fbda 4af6b14 631fbda 8e6b559 631fbda 4af6b14 631fbda 01e6032 335d363 a2770ee 335d363 a2770ee 335d363 4ceb2fd 335d363 4c2791d 30f4bb4 a2770ee 30f4bb4 631fbda 8b0b34b 631fbda 01e6032 335d363 631fbda 01e6032 335d363 4af6b14 631fbda 4af6b14 335d363 631fbda 335d363 631fbda 01e6032 631fbda 01e6032 3f10ec6 268d9a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 |
import gradio as gr
from functools import lru_cache
import random
import requests
import logging
import re
import config
import plotly.graph_objects as go
from typing import Dict
import json
import os
from leaderboard import (
get_current_leaderboard,
update_leaderboard,
start_backup_thread,
get_leaderboard,
get_elo_leaderboard,
ensure_elo_ratings_initialized
)
import sys
import openai
import threading
import time
from collections import Counter
from release_notes import get_release_notes_html
# Update the logging format to redact URLs
logging.basicConfig(
level=logging.WARNING, # Only show warnings and errors
format='%(asctime)s - %(levelname)s - %(message)s'
)
# Suppress verbose HTTP request logging
logging.getLogger("urllib3").setLevel(logging.CRITICAL)
logging.getLogger("httpx").setLevel(logging.CRITICAL)
logging.getLogger("openai").setLevel(logging.CRITICAL)
class RedactURLsFilter(logging.Filter):
def filter(self, record):
# Redact all URLs using regex pattern
url_pattern = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
record.msg = re.sub(url_pattern, '[REDACTED_URL]', str(record.msg))
# Remove HTTP status codes
record.msg = re.sub(r'HTTP/\d\.\d \d+ \w+', '', record.msg)
# Remove sensitive API references
record.msg = record.msg.replace(config.API_URL, '[API]')
record.msg = record.msg.replace(config.NEXTCLOUD_URL, '[CLOUD]')
# Clean up residual artifacts
record.msg = re.sub(r'\s+', ' ', record.msg).strip()
record.msg = re.sub(r'("?) \1', '', record.msg) # Remove empty quotes
return True
# Apply the filter to all handlers
logger = logging.getLogger(__name__)
for handler in logging.root.handlers:
handler.addFilter(RedactURLsFilter())
# Start the backup thread
start_backup_thread()
# Function to get available models (using predefined list)
def get_available_models():
return [model[0] for model in config.get_approved_models()]
# Function to get recent opponents for a model
recent_opponents = {}
def update_recent_opponents(model_a, model_b):
recent_opponents.setdefault(model_a, []).append(model_b)
recent_opponents.setdefault(model_b, []).append(model_a)
# Limit history to last 5 opponents
recent_opponents[model_a] = recent_opponents[model_a][-5:]
recent_opponents[model_b] = recent_opponents[model_b][-5:]
# Function to call Ollama API with caching
@lru_cache(maxsize=100)
def call_ollama_api(model, prompt):
client = openai.OpenAI(
api_key=config.API_KEY,
base_url=config.API_URL
)
try:
logger.info(f"Starting API call for model: {model}")
response = client.chat.completions.create(
model=model,
messages=[
{
"role": "system",
"content": "You are a helpful assistant. At no point should you reveal your name, identity or team affiliation to the user, especially if asked directly!"
},
{
"role": "user",
"content": prompt
}
],
timeout=180
)
logger.info(f"Received response for model: {model}")
if not response or not response.choices:
logger.error(f"Empty response received for model: {model}")
return [
{"role": "user", "content": prompt},
{"role": "assistant", "content": "Error: Empty response from the model"}
]
content = response.choices[0].message.content
if not content:
logger.error(f"Empty content received for model: {model}")
return [
{"role": "user", "content": prompt},
{"role": "assistant", "content": "Error: Empty content from the model"}
]
# Extract thinking part and main content using regex
thinking_match = re.search(r'<think>(.*?)</think>', content, flags=re.DOTALL)
if thinking_match:
thinking_content = thinking_match.group(1).strip()
main_content = re.sub(r'<think>.*?</think>', '', content, flags=re.DOTALL).strip()
logger.info(f"Found thinking content for model: {model}")
return [
{"role": "user", "content": prompt},
{"role": "assistant", "content": f"{main_content}\n\n<details><summary>π€ View thinking process</summary>\n\n{thinking_content}\n\n</details>"}
]
# If no thinking tags, return normal content
logger.info(f"No thinking tags found for model: {model}")
return [
{"role": "user", "content": prompt},
{"role": "assistant", "content": content.strip()}
]
except requests.exceptions.Timeout:
logger.error(f"Timeout error after 180 seconds for model: {model}")
return [
{"role": "user", "content": prompt},
{"role": "assistant", "content": "Error: Model response timed out after 180 seconds"}
]
except openai.BadRequestError as e:
error_msg = str(e)
logger.error(f"Bad request error for model: {model}. Error: {error_msg}")
return [
{"role": "user", "content": prompt},
{"role": "assistant", "content": "Error: Unable to get response from the model"}
]
except Exception as e:
logger.error(f"Error calling Ollama API for model: {model}. Error: {str(e)}", exc_info=True)
return [
{"role": "user", "content": prompt},
{"role": "assistant", "content": "Error: Unable to get response from the model"}
]
# Generate responses using two randomly selected models
def get_battle_counts():
leaderboard = get_current_leaderboard()
battle_counts = Counter()
for model, data in leaderboard.items():
battle_counts[model] = data['wins'] + data['losses']
return battle_counts
def generate_responses(prompt):
available_models = get_available_models()
if len(available_models) < 2:
return [
{"role": "user", "content": prompt},
{"role": "assistant", "content": "Error: Not enough models available"}
], [
{"role": "user", "content": prompt},
{"role": "assistant", "content": "Error: Not enough models available"}
], None, None
battle_counts = get_battle_counts()
# Sort models by battle count (ascending)
sorted_models = sorted(available_models, key=lambda m: battle_counts.get(m, 0))
# Select the first model (least battles)
model_a = sorted_models[0]
# Filter out recent opponents for model_a
potential_opponents = [m for m in sorted_models[1:] if m not in recent_opponents.get(model_a, [])]
# If no potential opponents left, reset recent opponents for model_a
if not potential_opponents:
recent_opponents[model_a] = []
potential_opponents = sorted_models[1:]
# For the second model, use weighted random selection
weights = [1 / (battle_counts.get(m, 1) + 1) for m in potential_opponents]
model_b = random.choices(potential_opponents, weights=weights, k=1)[0]
# Update recent opponents
update_recent_opponents(model_a, model_b)
# Get responses from both models
response_a = call_ollama_api(model_a, prompt)
response_b = call_ollama_api(model_b, prompt)
# Return responses directly (already formatted correctly)
return response_a, response_b, model_a, model_b
def battle_arena(prompt):
response_a, response_b, model_a, model_b = generate_responses(prompt)
# Check for API errors in responses
if any("Error: Unable to get response from the model" in msg["content"]
for msg in response_a + response_b
if msg["role"] == "assistant"):
return (
[], [], None, None,
gr.update(value=[]),
gr.update(value=[]),
gr.update(interactive=False, value="Voting Disabled - API Error"),
gr.update(interactive=False, value="Voting Disabled - API Error"),
gr.update(interactive=False, visible=False),
prompt,
0,
gr.update(visible=False),
gr.update(value="Error: Unable to get response from the model", visible=True)
)
nickname_a = random.choice(config.model_nicknames)
nickname_b = random.choice(config.model_nicknames)
# The responses are already in the correct format, no need to reformat
if random.choice([True, False]):
return (
response_a, response_b, model_a, model_b,
gr.update(label=nickname_a, value=response_a),
gr.update(label=nickname_b, value=response_b),
gr.update(interactive=True, value=f"Vote for {nickname_a}"),
gr.update(interactive=True, value=f"Vote for {nickname_b}"),
gr.update(interactive=True, visible=True),
prompt,
0,
gr.update(visible=False),
gr.update(value="Ready for your vote! π³οΈ", visible=True)
)
else:
return (
response_b, response_a, model_b, model_a,
gr.update(label=nickname_a, value=response_b),
gr.update(label=nickname_b, value=response_a),
gr.update(interactive=True, value=f"Vote for {nickname_a}"),
gr.update(interactive=True, value=f"Vote for {nickname_b}"),
gr.update(interactive=True, visible=True),
prompt,
0,
gr.update(visible=False),
gr.update(value="Ready for your vote! π³οΈ", visible=True)
)
def record_vote(prompt, left_response, right_response, left_model, right_model, choice):
# Check if outputs are generated
if not left_response or not right_response or not left_model or not right_model:
return (
"Please generate responses before voting.",
gr.update(),
gr.update(interactive=False),
gr.update(interactive=False),
gr.update(visible=False),
gr.update()
)
winner = left_model if choice == "Left is better" else right_model
loser = right_model if choice == "Left is better" else left_model
# Update the leaderboard
battle_results = update_leaderboard(winner, loser)
result_message = f"""
π Vote recorded! You're awesome! π
π΅ In the left corner: {get_human_readable_name(left_model)}
π΄ In the right corner: {get_human_readable_name(right_model)}
π And the champion you picked is... {get_human_readable_name(winner)}! π₯
"""
return (
gr.update(value=result_message, visible=True), # Show result as Markdown
get_leaderboard(), # Update leaderboard
get_elo_leaderboard(), # Update ELO leaderboard
gr.update(interactive=False), # Disable left vote button
gr.update(interactive=False), # Disable right vote button
gr.update(interactive=False), # Disable tie button
gr.update(visible=True) # Show model names
)
def get_leaderboard_chart():
battle_results = get_current_leaderboard()
# Calculate scores and sort results
for model, results in battle_results.items():
total_battles = results["wins"] + results["losses"]
if total_battles > 0:
win_rate = results["wins"] / total_battles
results["score"] = win_rate * (1 - 1 / (total_battles + 1))
else:
results["score"] = 0
sorted_results = sorted(
battle_results.items(),
key=lambda x: (x[1]["score"], x[1]["wins"] + x[1]["losses"]),
reverse=True
)
models = [get_human_readable_name(model) for model, _ in sorted_results]
wins = [results["wins"] for _, results in sorted_results]
losses = [results["losses"] for _, results in sorted_results]
scores = [results["score"] for _, results in sorted_results]
fig = go.Figure()
# Stacked Bar chart for Wins and Losses
fig.add_trace(go.Bar(
x=models,
y=wins,
name='Wins',
marker_color='#22577a'
))
fig.add_trace(go.Bar(
x=models,
y=losses,
name='Losses',
marker_color='#38a3a5'
))
# Line chart for Scores
fig.add_trace(go.Scatter(
x=models,
y=scores,
name='Score',
yaxis='y2',
line=dict(color='#ff7f0e', width=2)
))
# Update layout for full-width, increased height, and secondary y-axis
fig.update_layout(
title='Model Performance',
xaxis_title='Models',
yaxis_title='Number of Battles',
yaxis2=dict(
title='Score',
overlaying='y',
side='right'
),
barmode='stack',
height=800,
width=1450,
autosize=True,
legend=dict(
orientation='h',
yanchor='bottom',
y=1.02,
xanchor='right',
x=1
)
)
chart_data = fig.to_json()
return fig
def new_battle():
nickname_a = random.choice(config.model_nicknames)
nickname_b = random.choice(config.model_nicknames)
return (
"", # Reset prompt_input
gr.update(value=[], label=nickname_a), # Reset left Chatbot
gr.update(value=[], label=nickname_b), # Reset right Chatbot
None,
None,
gr.update(interactive=False, value=f"Vote for {nickname_a}"),
gr.update(interactive=False, value=f"Vote for {nickname_b}"),
gr.update(interactive=False, visible=False), # Reset Tie button
gr.update(value="", visible=False),
gr.update(),
gr.update(visible=False),
gr.update(),
0 # Reset tie_count
)
# Add this new function
def get_human_readable_name(model_name: str) -> str:
model_dict = dict(config.get_approved_models())
return model_dict.get(model_name, model_name)
# Add this new function to randomly select a prompt
def random_prompt():
return random.choice(config.example_prompts)
# Modify the continue_conversation function
def continue_conversation(prompt, left_chat, right_chat, left_model, right_model, previous_prompt, tie_count):
# Check if the prompt is empty or the same as the previous one
if not prompt or prompt == previous_prompt:
prompt = random.choice(config.example_prompts)
# Get responses (which are lists of messages)
left_response = call_ollama_api(left_model, prompt)
right_response = call_ollama_api(right_model, prompt)
# Append messages from the response lists
left_chat.extend(left_response)
right_chat.extend(right_response)
tie_count += 1
tie_button_state = gr.update(interactive=True) if tie_count < 3 else gr.update(interactive=False, value="Max ties reached. Please vote!")
return (
gr.update(value=left_chat),
gr.update(value=right_chat),
gr.update(value=""), # Clear the prompt input
tie_button_state,
prompt, # Return the new prompt
tie_count
)
def normalize_parameter_size(param_size: str) -> str:
"""Convert parameter size to billions (B) format."""
try:
# Remove any spaces and convert to uppercase for consistency
param_size = param_size.replace(" ", "").upper()
# Extract the number and unit
if 'M' in param_size:
# Convert millions to billions
number = float(param_size.replace('M', '').replace(',', ''))
return f"{number/1000:.2f}B"
elif 'B' in param_size:
# Already in billions, just format consistently
number = float(param_size.replace('B', '').replace(',', ''))
return f"{number:.2f}B"
else:
# If no unit or unrecognized format, try to convert the raw number
number = float(param_size.replace(',', ''))
if number >= 1000000000:
return f"{number/1000000000:.2f}B"
elif number >= 1000000:
return f"{number/1000000000:.2f}B"
else:
return f"{number/1000000000:.2f}B"
except:
return param_size # Return original if conversion fails
def load_latest_model_stats():
"""Load model stats from the model_stats.json file."""
try:
# Read directly from model_stats.json in root directory
with open('model_stats.json', 'r') as f:
stats = json.load(f)
# Convert stats to table format
table_data = []
headers = ["Model", "VRAM (GB)", "Size", "Parameters", "Quantization", "Tokens/sec", "Gen Tokens/sec", "Total Tokens", "Response Time (s)"]
for model in stats:
if not model.get("success", False): # Skip failed tests
continue
perf = model.get("performance", {})
info = model.get("model_info", {})
try:
# Format numeric values with 2 decimal places
model_size = float(info.get("size", 0)) # Get raw size
vram_gb = round(model_size/1024/1024/1024, 2) # Convert to GB
tokens_per_sec = round(float(perf.get("tokens_per_second", 0)), 2)
gen_tokens_per_sec = round(float(perf.get("generation_tokens_per_second", 0)), 2)
total_tokens = perf.get("total_tokens", 0)
response_time = round(float(perf.get("response_time", 0)), 2)
# Normalize parameter size to billions format
param_size = normalize_parameter_size(info.get("parameter_size", "Unknown"))
row = [
model.get("model_name", "Unknown"), # String
vram_gb, # Number (2 decimals)
model_size, # Number (bytes)
param_size, # String (normalized to B)
info.get("quantization_level", "Unknown"), # String
tokens_per_sec, # Number (2 decimals)
gen_tokens_per_sec, # Number (2 decimals)
total_tokens, # Number (integer)
response_time # Number (2 decimals)
]
table_data.append(row)
except Exception as row_error:
logger.warning(f"Skipping model {model.get('model_name', 'Unknown')}: {str(row_error)}")
continue
if not table_data:
return None, "No valid model stats found"
# Sort by tokens per second (numerically)
table_data.sort(key=lambda x: float(x[5]) if isinstance(x[5], (int, float)) else 0, reverse=True)
return headers, table_data
except Exception as e:
logger.error(f"Error in load_latest_model_stats: {str(e)}")
return None, f"Error loading model stats: {str(e)}"
# Initialize Gradio Blocks
with gr.Blocks(css="""
#dice-button {
min-height: 90px;
font-size: 35px;
}
.sponsor-button {
background-color: #30363D;
color: white;
border: none;
padding: 10px 20px;
border-radius: 6px;
cursor: pointer;
display: inline-flex;
align-items: center;
gap: 8px;
font-weight: bold;
}
.sponsor-button:hover {
background-color: #2D333B;
}
""") as demo:
gr.Markdown(config.ARENA_NAME)
# Main description with sponsor button
with gr.Row():
with gr.Column(scale=8):
gr.Markdown("""
**Step right up to the arena where frugal meets fabulous in the world of AI!**
Watch as our compact contenders (maxing out at 14B parameters) duke it out in a battle of wits and words.
What started as a simple experiment has grown into a popular platform for evaluating compact language models.
As the arena continues to expand with more models, features, and battles, it requires computational resources to maintain and improve.
If you find this project valuable and would like to support its development, consider sponsoring:
""")
with gr.Column(scale=2):
gr.Button(
"Sponsor on GitHub",
link="https://github.com/sponsors/k-mktr",
elem_classes="sponsor-button"
)
# Instructions in an accordion
with gr.Accordion("π How to Use", open=False):
gr.Markdown("""
1. To start the battle, go to the 'Battle Arena' tab.
2. Type your prompt into the text box. Alternatively, click the "π²" button to receive a random prompt.
3. Click the "Generate Responses" button to view the models' responses.
4. Cast your vote for the model that provided the better response. In the event of a Tie, enter a new prompt before continuing the battle.
5. Check out the Leaderboard to see how models rank against each other.
More info: [README.md](https://huggingface.co/spaces/k-mktr/gpu-poor-llm-arena/blob/main/README.md)
""")
# Leaderboard Tab (now first)
with gr.Tab("Leaderboard"):
gr.Markdown("""
### Main Leaderboard
This leaderboard uses a scoring system that balances win rate and total battles. The score is calculated using the formula:
**Score = Win Rate * (1 - 1 / (Total Battles + 1))**
This formula rewards models with higher win rates and more battles. As the number of battles increases, the score approaches the win rate.
""")
leaderboard = gr.Dataframe(
headers=["#", "Model", "Score", "Wins", "Losses", "Total Battles", "Win Rate"],
row_count=10,
col_count=7,
interactive=True,
label="Leaderboard"
)
# Battle Arena Tab (now second)
with gr.Tab("Battle Arena"):
with gr.Row():
prompt_input = gr.Textbox(
label="Enter your prompt",
placeholder="Type your prompt here...",
scale=20
)
random_prompt_btn = gr.Button("π²", scale=1, elem_id="dice-button")
gr.Markdown("<br>")
# Add the random prompt button functionality
random_prompt_btn.click(
random_prompt,
outputs=prompt_input
)
submit_btn = gr.Button("Generate Responses", variant="primary")
with gr.Row():
left_output = gr.Chatbot(label=random.choice(config.model_nicknames), type="messages")
right_output = gr.Chatbot(label=random.choice(config.model_nicknames), type="messages")
with gr.Row():
left_vote_btn = gr.Button(f"Vote for {left_output.label}", interactive=False)
tie_btn = gr.Button("Tie π Continue with a new prompt", interactive=False, visible=False)
right_vote_btn = gr.Button(f"Vote for {right_output.label}", interactive=False)
result = gr.Textbox(
label="Status",
interactive=False,
value="Generate responses to start the battle! π",
visible=True # Always visible
)
with gr.Row(visible=False) as model_names_row:
left_model = gr.Textbox(label="π΅ Left Model", interactive=False)
right_model = gr.Textbox(label="π΄ Right Model", interactive=False)
previous_prompt = gr.State("") # Add this line to store the previous prompt
tie_count = gr.State(0) # Add this line to keep track of tie count
new_battle_btn = gr.Button("New Battle")
# ELO Leaderboard Tab
with gr.Tab("ELO Leaderboard"):
gr.Markdown("""
### ELO Rating System
This leaderboard uses a modified ELO rating system that takes into account both the performance and size of the models.
Initial ratings are based on model size, with larger models starting at higher ratings.
The ELO rating is calculated based on wins and losses, with adjustments made based on the relative strengths of opponents.
""")
elo_leaderboard = gr.Dataframe(
headers=["#", "Model", "ELO Rating", "Wins", "Losses", "Total Battles", "Win Rate"],
row_count=10,
col_count=7,
interactive=True,
label="ELO Leaderboard"
)
# Latest Updates Tab
with gr.Tab("Latest Updates"):
release_notes = gr.HTML(get_release_notes_html())
refresh_notes_btn = gr.Button("Refresh Updates")
refresh_notes_btn.click(
get_release_notes_html,
outputs=[release_notes]
)
# Model Stats Tab
with gr.Tab("Model Stats"):
gr.Markdown("""
### Model Performance Statistics
This tab shows detailed performance metrics for each model, tested using a creative writing prompt.
The tests were performed on an **AMD Radeon RX 7600 XT 16GB GPU**.
For detailed information about the testing methodology, parameters, and hardware setup, please refer to the
[README_model_stats.md](https://huggingface.co/spaces/k-mktr/gpu-poor-llm-arena/blob/main/README_model_stats.md).
""")
headers, table_data = load_latest_model_stats()
if headers:
model_stats_table = gr.Dataframe(
headers=headers,
value=table_data,
row_count=len(table_data),
col_count=len(headers),
interactive=True,
label="Model Performance Statistics"
)
else:
gr.Markdown(f"β οΈ {table_data}") # Show error message if loading failed
# Define interactions
submit_btn.click(
battle_arena,
inputs=prompt_input,
outputs=[
left_output, right_output, left_model, right_model,
left_output, right_output, left_vote_btn, right_vote_btn,
tie_btn, previous_prompt, tie_count, model_names_row, result
]
)
left_vote_btn.click(
lambda *args: record_vote(*args, "Left is better"),
inputs=[prompt_input, left_output, right_output, left_model, right_model],
outputs=[result, leaderboard, elo_leaderboard, left_vote_btn,
right_vote_btn, tie_btn, model_names_row]
)
right_vote_btn.click(
lambda *args: record_vote(*args, "Right is better"),
inputs=[prompt_input, left_output, right_output, left_model, right_model],
outputs=[result, leaderboard, elo_leaderboard, left_vote_btn,
right_vote_btn, tie_btn, model_names_row]
)
tie_btn.click(
continue_conversation,
inputs=[prompt_input, left_output, right_output, left_model, right_model, previous_prompt, tie_count],
outputs=[left_output, right_output, prompt_input, tie_btn, previous_prompt, tie_count]
)
new_battle_btn.click(
new_battle,
outputs=[prompt_input, left_output, right_output, left_model,
right_model, left_vote_btn, right_vote_btn, tie_btn,
result, leaderboard, model_names_row, tie_count]
)
# Update leaderboard on launch
demo.load(get_leaderboard, outputs=leaderboard)
demo.load(get_elo_leaderboard, outputs=elo_leaderboard)
if __name__ == "__main__":
# Initialize ELO ratings before launching the app
ensure_elo_ratings_initialized()
# Start the model refresh thread
config.start_model_refresh_thread()
demo.launch(show_api=False) |