File size: 6,999 Bytes
41059d3
 
748b9f8
 
41059d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e142dae
 
41059d3
 
 
b2e6968
41059d3
748b9f8
 
 
 
 
 
 
41059d3
b2e6968
41059d3
748b9f8
 
41059d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22aecfa
41059d3
22aecfa
41059d3
 
 
 
 
22aecfa
41059d3
 
 
 
 
e142dae
41059d3
 
e6a96bc
41059d3
 
22aecfa
41059d3
 
f090183
41059d3
 
 
 
 
 
 
22aecfa
41059d3
 
 
 
 
 
 
22aecfa
41059d3
 
 
 
 
 
22aecfa
 
41059d3
 
 
 
 
22aecfa
 
41059d3
 
 
 
 
 
 
 
0a02473
41059d3
 
0a02473
41059d3
0a02473
41059d3
 
 
 
 
 
 
 
 
 
 
 
 
 
e142dae
41059d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32c46a5
6bfd1da
41059d3
 
 
 
 
22aecfa
e142dae
41059d3
 
 
 
 
 
 
 
 
 
e142dae
 
0a02473
 
748b9f8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from PyPDF2 import PdfReader
from markdownify import markdownify
import gradio as gr
import openai

# Persistent System Prompt
LOSSDOG_PROMPT = """
<LossDogFramework version="3.0">
    <Identity>
        <Description>
            You are Loss Dog, a cutting-edge AI career advisor, resume analyzer, and builder. Your primary role is to:
            - Read and analyze the user's resume thoroughly.
            - Use the resume as a knowledge context for all interactions.
            - Engage with the user by answering questions, identifying areas of improvement, and offering suggestions.
        </Description>
    </Identity>
    <CoreDirectives>
        <Mission>
            Your mission is to provide actionable resume advice. Always leverage the uploaded resume to give feedback,
            highlight strengths, and identify weaknesses.
        </Mission>
    </CoreDirectives>
</LossDogFramework>
"""

def extract_text_from_file(file_path: str, file_name: str) -> str:
    """Extract text from a PDF or TXT file."""
    if file_name.endswith(".pdf"):
        try:
            pdf_reader = PdfReader(file_path)
            text = "\n".join(page.extract_text() for page in pdf_reader.pages)
            return text
        except Exception as e:
            return f"Error reading PDF file: {str(e)}"
    elif file_name.endswith(".txt"):
        try:
            with open(file_path, "r") as f:
                return f.read()
        except Exception as e:
            return f"Error reading text file: {str(e)}"
    else:
        return "Unsupported file format. Please upload a PDF or TXT file."

def convert_to_markdown(text: str) -> str:
    """Convert extracted file text to Markdown for neat display."""
    return markdownify(text, heading_style="ATX")

def interact_with_lossdog(
    user_message: str,
    markdown_text: str,
    api_key: str,
    history: list
) -> list:
    """
    Generates the assistant's response, always including the resume content as context
    alongside the conversation history.
    """
    try:
        openai.api_key = api_key
        
        # Validate existing history entries
        validated_history = []
        for msg in history:
            if isinstance(msg, dict) and "role" in msg and "content" in msg:
                validated_history.append({"role": msg["role"], "content": msg["content"]})
        
        # Build the messages for OpenAI Chat
        messages = [
            {"role": "system", "content": LOSSDOG_PROMPT},
            {"role": "system", "content": f"Resume Content:\n{markdown_text}"}
        ] + validated_history
        
        # Add the new user message at the end
        messages.append({"role": "user", "content": user_message})

        # Create ChatCompletion
        response = openai.ChatCompletion.create(
            model="gpt-4o-mini",
            messages=messages,
            max_tokens=4000  # You can adjust this as needed
        )
        assistant_response = response.choices[0].message.content
        
        # Update local (Gradio) history
        validated_history.append({"role": "user", "content": user_message})
        validated_history.append({"role": "assistant", "content": assistant_response})

        return validated_history
    except Exception as e:
        # Append the error as an assistant message (for visibility)
        history.append({"role": "assistant", "content": f"Error: {str(e)}"})
        return history

def create_demo():
    """Build the Gradio app."""
    with gr.Blocks(css="#resume-preview {height:300px; overflow-y:auto; border:1px solid #ccc; padding:10px;}") as demo:
        gr.Markdown("""
        # 🐕 LOSS Dog: AI-Powered Resume Advisor

        **Steps**:
        1. Upload your resume (PDF/TXT). It will appear in a scrollable box on the right.
        2. Ask any questions or request feedback. LOSS Dog always references the uploaded resume.
        3. Enjoy a back-and-forth conversation to refine your resume!
        """)

        # API Key
        api_key = gr.Textbox(
            label="OpenAI API Key",
            placeholder="Enter your OpenAI API key...",
            type="password"
        )

        # Layout
        with gr.Row():
            with gr.Column(scale=3):
                chatbot = gr.Chatbot(label="Chat with LOSS Dog", type="messages")
            with gr.Column(scale=1):
                markdown_preview = gr.Markdown(label="Resume Preview", elem_id="resume-preview")

        # User Input
        with gr.Row():
            user_input = gr.Textbox(label="Your Message", lines=1)
            send_button = gr.Button("Send 🐾")

        # File Upload
        with gr.Row():
            upload = gr.File(label="Upload Your Resume (PDF or TXT)")

        # States
        history_state = gr.State([])  # Chat History
        markdown_state = gr.State("") # Stored resume text in Markdown

        # 1) File Upload Handler
        def handle_upload(file, api_key):
            """
            Extract text -> convert to Markdown -> display in the right pane.
            We do NOT modify the chat history here; user can start fresh or continue.
            """
            if not file:
                return "No file uploaded.", gr.update(value=[])
            
            text = extract_text_from_file(file.name, file.name)
            if text.startswith("Error"):
                # Show error in preview
                return text, gr.update(value=[])
            
            resume_md = convert_to_markdown(text)
            # Keep the conversation? Up to you. We'll keep existing conversation.
            return resume_md, gr.update(value=[])

        # 2) Chat Message Handler
        def handle_message(user_message, api_key, markdown_text, history):
            """
            Called when the user sends a new message. We pass the stored resume + history.
            """
            updated_history = interact_with_lossdog(user_message, markdown_text, api_key, history)
            return updated_history, updated_history

        # Link File Upload -> handle_upload
        upload.change(
            handle_upload,
            inputs=[upload, api_key],
            outputs=[markdown_preview, history_state]
        )

        # Link Send Button -> handle_message
        send_button.click(
            handle_message,
            inputs=[user_input, api_key, markdown_state, history_state],
            outputs=[chatbot, history_state]
        )

        # Any time the user uploads a file, also store the resume text in markdown_state
        # so subsequent messages can see it.
        def store_resume_in_state(markdown_content):
            return markdown_content

        # We'll create a small chain that ensures markdown_preview -> markdown_state
        markdown_preview.change(
            store_resume_in_state,
            inputs=[markdown_preview],
            outputs=[markdown_state]
        )

    return demo

if __name__ == "__main__":
    demo = create_demo()
    demo.launch()