Spaces:
Sleeping
Sleeping
更新語音助理功能
Browse files- .gitignore.txt +17 -0
- app.py +66 -0
- requirements.txt +5 -0
.gitignore.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 忽略虛擬環境和 cache
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*.tmp
|
| 5 |
+
*.log
|
| 6 |
+
*.mp3
|
| 7 |
+
*.wav
|
| 8 |
+
|
| 9 |
+
# 忽略 huggingface token
|
| 10 |
+
*.env
|
| 11 |
+
|
| 12 |
+
# VSCode 和 Jupyter
|
| 13 |
+
.vscode/
|
| 14 |
+
.ipynb_checkpoints/
|
| 15 |
+
|
| 16 |
+
# 不可上傳的大模型(如vosk-model)
|
| 17 |
+
vosk-model-small-cn-0.22/
|
app.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import os
|
| 4 |
+
from gtts import gTTS
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 6 |
+
import torch
|
| 7 |
+
import json
|
| 8 |
+
import tempfile
|
| 9 |
+
import base64
|
| 10 |
+
|
| 11 |
+
# 使用小模型,因Hugging Face Space限制
|
| 12 |
+
MODEL_NAME = "Qwen/Qwen1.5-0.5B-Chat"
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 14 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True).eval()
|
| 15 |
+
|
| 16 |
+
# 語音辨識 - 用 placeholder,不在huggingface運行vosk(因大小限制)
|
| 17 |
+
def fake_transcribe(audio):
|
| 18 |
+
return "你好,請問有什麼可以幫忙的?"
|
| 19 |
+
|
| 20 |
+
# 回答問題
|
| 21 |
+
def answer_question(text):
|
| 22 |
+
messages = [
|
| 23 |
+
{"role": "user", "content": text}
|
| 24 |
+
]
|
| 25 |
+
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
| 26 |
+
with torch.no_grad():
|
| 27 |
+
outputs = model.generate(input_ids, max_new_tokens=200)
|
| 28 |
+
response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
|
| 29 |
+
return response
|
| 30 |
+
|
| 31 |
+
# TTS 文字轉語音
|
| 32 |
+
def text_to_speech(text):
|
| 33 |
+
tts = gTTS(text, lang='zh')
|
| 34 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
|
| 35 |
+
tts.save(fp.name)
|
| 36 |
+
with open(fp.name, "rb") as f:
|
| 37 |
+
audio_b64 = base64.b64encode(f.read()).decode("utf-8")
|
| 38 |
+
return f"data:audio/mp3;base64,{audio_b64}"
|
| 39 |
+
|
| 40 |
+
# 整合流程
|
| 41 |
+
def chat_pipeline(audio_input=None, text_input=None):
|
| 42 |
+
if audio_input:
|
| 43 |
+
text = fake_transcribe(audio_input)
|
| 44 |
+
elif text_input:
|
| 45 |
+
text = text_input
|
| 46 |
+
else:
|
| 47 |
+
return "請輸入問題或語音", None
|
| 48 |
+
response = answer_question(text)
|
| 49 |
+
speech_url = text_to_speech(response)
|
| 50 |
+
return response, speech_url
|
| 51 |
+
|
| 52 |
+
# Gradio介面
|
| 53 |
+
with gr.Blocks() as demo:
|
| 54 |
+
gr.Markdown("## 🎙️ 語音助理(Hugging Face Space 測試版)")
|
| 55 |
+
with gr.Row():
|
| 56 |
+
mic = gr.Audio(source="microphone", type="filepath", label="輸入語音")
|
| 57 |
+
text_input = gr.Textbox(label="或輸入文字")
|
| 58 |
+
with gr.Row():
|
| 59 |
+
submit = gr.Button("送出")
|
| 60 |
+
output_text = gr.Textbox(label="回答")
|
| 61 |
+
output_audio = gr.Audio(label="語音回答", type="filepath")
|
| 62 |
+
|
| 63 |
+
submit.click(fn=chat_pipeline, inputs=[mic, text_input], outputs=[output_text, output_audio])
|
| 64 |
+
|
| 65 |
+
if __name__ == "__main__":
|
| 66 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==4.28.3
|
| 2 |
+
gtts==2.5.1
|
| 3 |
+
transformers==4.41.1
|
| 4 |
+
torch==2.3.0
|
| 5 |
+
requests==2.31.0
|