added inference
Browse files- tasks/text.py +33 -3
tasks/text.py
CHANGED
@@ -7,11 +7,19 @@ import random
|
|
7 |
from .utils.evaluation import TextEvaluationRequest
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
router = APIRouter()
|
11 |
|
12 |
-
DESCRIPTION = "
|
13 |
ROUTE = "/text"
|
14 |
|
|
|
|
|
15 |
@router.post(ROUTE, tags=["Text Task"],
|
16 |
description=DESCRIPTION)
|
17 |
async def evaluate_text(request: TextEvaluationRequest):
|
@@ -37,6 +45,12 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
37 |
"7_fossil_fuels_needed": 7
|
38 |
}
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
# Load and prepare the dataset
|
41 |
dataset = load_dataset(request.dataset_name)
|
42 |
|
@@ -55,10 +69,26 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
55 |
# YOUR MODEL INFERENCE CODE HERE
|
56 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
57 |
#--------------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
#
|
60 |
true_labels = test_dataset["label"]
|
61 |
-
predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
62 |
|
63 |
#--------------------------------------------------------------------------------------------
|
64 |
# YOUR MODEL INFERENCE STOPS HERE
|
|
|
7 |
from .utils.evaluation import TextEvaluationRequest
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
|
10 |
+
|
11 |
+
import tensorflow as tf
|
12 |
+
from huggingface_hub import hf_hub_download
|
13 |
+
from transformers import ElectraTokenizer
|
14 |
+
|
15 |
+
|
16 |
router = APIRouter()
|
17 |
|
18 |
+
DESCRIPTION = "Electra with balanced dataset"
|
19 |
ROUTE = "/text"
|
20 |
|
21 |
+
|
22 |
+
|
23 |
@router.post(ROUTE, tags=["Text Task"],
|
24 |
description=DESCRIPTION)
|
25 |
async def evaluate_text(request: TextEvaluationRequest):
|
|
|
45 |
"7_fossil_fuels_needed": 7
|
46 |
}
|
47 |
|
48 |
+
# Download our pre-trained model from Hugging Face
|
49 |
+
model_path = hf_hub_download(repo_id="julianaconsuegra/electra-base-climate-disinformation", filename="tf_model.h5")
|
50 |
+
|
51 |
+
# Load the model
|
52 |
+
model = tf.keras.models.load_model(model_path)
|
53 |
+
|
54 |
# Load and prepare the dataset
|
55 |
dataset = load_dataset(request.dataset_name)
|
56 |
|
|
|
69 |
# YOUR MODEL INFERENCE CODE HERE
|
70 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
71 |
#--------------------------------------------------------------------------------------------
|
72 |
+
# Load ELECTRA tokenizer
|
73 |
+
tokenizer = ElectraTokenizer.from_pretrained("google/electra-base-discriminator")
|
74 |
+
|
75 |
+
# Tokenize test data with same parameters as training
|
76 |
+
inputs = tokenizer(
|
77 |
+
test_dataset["text"],
|
78 |
+
truncation=True,
|
79 |
+
padding="max_length",
|
80 |
+
return_tensors="tf"
|
81 |
+
)
|
82 |
+
|
83 |
+
# Run model prediction
|
84 |
+
logits = model.predict({
|
85 |
+
"input_ids": inputs["input_ids"],
|
86 |
+
"attention_mask": inputs["attention_mask"]
|
87 |
+
})
|
88 |
+
predictions = tf.argmax(logits, axis=1).numpy()
|
89 |
|
90 |
+
# Get ground truth labels
|
91 |
true_labels = test_dataset["label"]
|
|
|
92 |
|
93 |
#--------------------------------------------------------------------------------------------
|
94 |
# YOUR MODEL INFERENCE STOPS HERE
|