Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Cargar el modelo y el tokenizador
|
5 |
+
model_name = "microsoft/DialoGPT-medium" # Puedes cambiar esto por otro modelo de chatbot
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
+
|
9 |
+
def chatbot(input, history=[]):
|
10 |
+
# Agregar el input del usuario al historial
|
11 |
+
history.append(input)
|
12 |
+
|
13 |
+
# Tokenizar la conversaci贸n
|
14 |
+
input_ids = tokenizer.encode(" ".join(history), return_tensors="pt")
|
15 |
+
|
16 |
+
# Generar una respuesta
|
17 |
+
output = model.generate(input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
|
18 |
+
|
19 |
+
# Decodificar la respuesta
|
20 |
+
response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
21 |
+
|
22 |
+
# Agregar la respuesta al historial
|
23 |
+
history.append(response)
|
24 |
+
|
25 |
+
return history, history
|
26 |
+
|
27 |
+
# Crear la interfaz de Gradio
|
28 |
+
iface = gr.Interface(
|
29 |
+
fn=chatbot,
|
30 |
+
inputs=["text", "state"],
|
31 |
+
outputs=["chatbot", "state"],
|
32 |
+
title="Tu Compa帽ero AI",
|
33 |
+
description="Un chatbot de IA dise帽ado para simular conversaciones personales.",
|
34 |
+
)
|
35 |
+
|
36 |
+
iface.launch()
|